Ja. A. Solovjov, V. A. Pilipenko
2020 Doklady BGUIR  
Present work is devoted to determination the regularity of change of specific resistance and Schottky barrier height of nickel films on n-type silicon (111) at their rapid thermal treatment in the temperatures range from 200 to 550 °C. Nickel films of about 60 nm thickness were deposited by magnetron sputtering onto the silicon substrates having a resistivity of 0.58 to 0.53 Ohms×cm. The rapid thermal treatment was carried out in the range of 200 to 550 °C under heat balance mode by irradiating
more » ... the backside of the substrates with non-coherent light flux in nitrogen ambient for 7 seconds. The thickness of the nickel films was determined by scanning electron microscopy. The sheet resistance of the samples was measured by a four-probe method. The Schottky barrier height was determined from I-V plots. It is shown that at a temperatureы of rapid thermal treatment of Ni/n-Si (111) 200–250 °C nickel will be transformed to Ni2Si, increasing in thickness by 1.15–1.33 times, specific resistance increases to 26–30 μOhm×cm, and Schottky barrier height decreases from 0.66 to 0.6 V. At a rapid thermal treatment temperature of 300°C the initial nickel film thickness increases by 1.93 times, the resistivity and Schottky barrier height decrease to 26–30 μOhm×cm and 0.59 V respectively due to the conversion of the Ni2Si into NiSi and the fixation of the barrier height by surface states at the silicidesilicon interface. Rapid thermal treatment of 350–550 °C transforms the original nickel film into NiSi, increases its thickness by 2.26–2.67 times, reduces its resistivity to 15–18 μOhm×cm and increases the Schottky barrier height to 0.62–0.64 V. The minimum defects and better reproducibility of electrophysical properties are characterized by NiSi films formed by rapid thermal treatment of nickel films on n-type silicon at a temperature of 400–450 °C. The results obtained can be used in the technology of integrated electronics products containing rectifying contacts.
doi:10.35596/1729-7648-2020-18-1-81-88 fatcat:65asoapd4rfsdpax6ldic2my4q