On the number of representations of an integer by certain quadratic forms in sixteen variables

B. Ramakrishnan, Brundaban Sahu
2014 International Journal of Number Theory  
We evaluate the convolution sums l,m∈N,l+2m=n σ3(l)σ3(m), l,m∈N,l+3m=n σ3(l)σ3(m), l,m∈N,2l+3m=n σ3(l)σ3(m) and l,m∈N,l+6m=n σ3(l)σ3(m) for all n ∈ N using the theory of modular forms and use these convolution sums to determine the number of representations of a positive integer n by the quadratic forms Q8 ⊕ Q8 and Q8 ⊕ 2Q8, where the quadratic form Q8 is given by
doi:10.1142/s1793042114500638 fatcat:4gschqraafacbey33wtmapedki