Energy-efficient Memory System Design with Spintronics

Ashish Ranjan
Modern computing platforms, from servers to mobile devices, demand ever-increasing amounts of memory to keep up with the growing amounts of data they process, and to bridge the widening processor-memory gap. A large and growing fraction of chip area and energy is expended in memories, which face challenges with technology scaling due to increased leakage, process variations, and unreliability. On the other hand, data intensive workloads such as machine learning and data analytics pose
more » ... tics pose increasing demands on memory systems. Consequently, improving the energy-efficiency and performance of memory systems is an important challenge for computing system designers. Spintronic memories, which offer several desirable characteristics - near-zero leakage, high density, non-volatility and high endurance - are of great interest for designing future memory systems. However, these memories are not drop-in replacements for current memory technologies, viz. Static Random Access Memory (SRAM) and Dynamic Random Access Memory (DRAM). They pose unique challenges such as variable access times, and require higher write latency and write energy. This dissertation explores new approaches to improving the energy efficiency of spintronic memory systems. The dissertation first explores the design of approximate memories, in which the need to store and access data precisely is foregone in return for improvements in energy efficiency. This is of particular interest, since many emerging workloads exhibit an inherent ability to tolerate approximations to their underlying computations and data while still producing outputs of acceptable quality. The dissertation proposes that approximate spintronic memories can be realized either by reducing the amount of data that is written to/read from them, or by reducing the energy consumed per access. To reduce memory traffic, the dissertation proposes approximate memory compression, wherein a quality-aware memory controller transparently compresses/decompresses data written to or read from memory. For b [...]
doi:10.25394/pgs.7479371.v2 fatcat:zu7tgm56pzabtd4sa2klmlhk6i