Deubiquitinase OTUD5 Modulates mTOR Signaling Pathways to Promote Bladder Cancer Progression [post]

Tao Hou, Weichao Dan, Tianjie Liu, Bo Liu, Yi Wei, Chenyang Yue, Taotao Que, Yuzeshi Lei, Zixi Wang, Jin Zeng, Yizeng Fan, Lei Li
2021 unpublished
BackgroundThe mammalian target of Rapamycin (mTOR) pathway serves as a crucial regulator of various biological processes such as cell growth and cancer progression. In bladder cancer, recent discoveries showing the cancer-promoting role of mTOR complex 1 have attracted wide attention. However, the regulation of mTOR signaling in bladder cancer is complicated and the underlying mechanism remains elusive. Here, we report that the deubiquitinating enzyme, ovarian tumor domain-containing protein 5
more » ... OTUD5), can activate the mTOR signaling pathway, promote cancer progression, and show its oncogenic potential in bladder cancer.MethodsThe expression of OTUD5 in bladder cancer was analyzed using bladder cancer tissue microarrays and Western blotting analysis. Meanwhile, to demonstrate the role of OTUD5-RNF186-Sestrin2-mTOR axis in bladder cancer, we have adopted a series of biochemical and molecular biological methods to verify in vivo and in vitro. The methods used included quantitative real time PCR assay; western blot assay; Immunofluorescence staining assay; MTT assay; colony formation assay; Co-immunoprecipitation assay; In vivo ubiquitination assay; Immunohistochemical assay and Bladder Cancer xenograft animal model.ResultsIn our study, we found that OTUD5 deubiquitinated a RING-type E3 ligase, RNF186, and stabilized its function. In addition, the stabilization of RNF186 further led to the degradation of Sestrin2, which is an inhibitor of mTOR signaling pathway. ConclusionTogether, we first proved that OTUD5 can promote bladder cancer progression through the OTUD5-RNF186-Sestrin2-mTOR axis and provided novel insights into the diagnosis and treatment of bladder cancer.
doi:10.21203/rs.3.rs-1052309/v1 fatcat:3l2y7mogijb75gxa2tv7xftaq4