Atlas: A Dataset and Benchmark for E-commerce Clothing Product Categorization [article]

Venkatesh Umaashankar, Girish Shanmugam S, Aditi Prakash
2019 arXiv   pre-print
In E-commerce, it is a common practice to organize the product catalog using product taxonomy. This enables the buyer to easily locate the item they are looking for and also to explore various items available under a category. Product taxonomy is a tree structure with 3 or more levels of depth and several leaf nodes. Product categorization is a large scale classification task that assigns a category path to a particular product. Research in this area is restricted by the unavailability of good
more » ... eal-world datasets and the variations in taxonomy due to the absence of a standard across the different e-commerce stores. In this paper, we introduce a high-quality product taxonomy dataset focusing on clothing products which contain 186,150 images under clothing category with 3 levels and 52 leaf nodes in the taxonomy. We explain the methodology used to collect and label this dataset. Further, we establish the benchmark by comparing image classification and Attention based Sequence models for predicting the category path. Our benchmark model reaches a micro f-score of 0.92 on the test set. The dataset, code and pre-trained models are publicly available at . We invite the community to improve upon these baselines.
arXiv:1908.08984v1 fatcat:n2hbzhbynnexjov7jxqxbnhhzq