The TensorFlow Partitioning and Scheduling Problem: It's the Critical Path! [article]

Ruben Mayer and Christian Mayer and Larissa Laich
2017 arXiv   pre-print
State-of-the-art data flow systems such as TensorFlow impose iterative calculations on large graphs that need to be partitioned on heterogeneous devices such as CPUs, GPUs, and TPUs. However, partitioning can not be viewed in isolation. Each device has to select the next graph vertex to be executed, i.e., perform local scheduling decisions. Both problems, partitioning and scheduling, are NP-complete by themselves but have to be solved in combination in order to minimize overall execution time
more » ... an iteration. In this paper, we propose several heuristic strategies to solve the partitioning and scheduling problem in TensorFlow. We simulate the performance of the proposed strategies in heterogeneous environments with communication-intensive workloads that are common to TensorFlow. Our findings indicate that the best partitioning and scheduling heuristics are those that focus on minimizing the execution time of the critical path in the graph. Those strategies provide a speed-up of up to 4 times in comparison to strategies that are agnostic to the critical path, such as hash-based partitioning and FIFO scheduling.
arXiv:1711.01912v1 fatcat:ke7gccuoiben3fnsv2lowpem44