A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2015; you can also visit the original URL.
The file type is application/pdf
.
A Spike-Train Probability Model
2001
Neural Computation
Poisson processes usually provide adequate descriptions of the irregularity in neuron spike times after pooling the data across large numbers of trials, as is done in constructing the peristimulus time histogram. When probabilities are needed to describe the behavior of neurons within individual trials, however, Poisson process models are often inadequate. In principle, an explicit formula gives the probability density of a single spike train in great generality, but without additional
doi:10.1162/08997660152469314
pmid:11506667
fatcat:hm6lj3jkdzdltfy5mkl6wegcdi