SADIH: Semantic-Aware DIscrete Hashing

Zheng Zhang, Guo-sen Xie, Yang Li, Sheng Li, Zi Huang
2019 PROCEEDINGS OF THE THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE AND THE TWENTY-EIGHTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE  
Due to its low storage cost and fast query speed, hashing has been recognized to accomplish similarity search in largescale multimedia retrieval applications. Particularly, supervised hashing has recently received considerable research attention by leveraging the label information to preserve the pairwise similarities of data points in the Hamming space. However, there still remain two crucial bottlenecks: 1) the learning process of the full pairwise similarity preservation is computationally
more » ... affordable and unscalable to deal with big data; 2) the available category information of data are not well-explored to learn discriminative hash functions. To overcome these challenges, we propose a unified Semantic-Aware DIscrete Hashing (SADIH) framework, which aims to directly embed the transformed semantic information into the asymmetric similarity approximation and discriminative hashing function learning. Specifically, a semantic-aware latent embedding is introduced to asymmetrically preserve the full pairwise similarities while skillfully handle the cumbersome n×n pairwise similarity matrix. Meanwhile, a semantic-aware autoencoder is developed to jointly preserve the data structures in the discriminative latent semantic space and perform data reconstruction. Moreover, an efficient alternating optimization algorithm is proposed to solve the resulting discrete optimization problem. Extensive experimental results on multiple large-scale datasets demonstrate that our SADIH can clearly outperform the state-of-the-art baselines with the additional benefit of lower computational costs.
doi:10.1609/aaai.v33i01.33015853 fatcat:6ypjbpi2nbcqbpf3anfpfmhts4