Evaluation of mixing characteristics for merkle - damgard hash functions
Оценка характеристик перемешивания хэш-функций семейства MD

A.M. Koreneva
2019 Prikladnaya diskretnaya matematika Prilozhenie  
Матрично-графовый подход (МГП), нашедший успешное применение к оценке свойств итеративных блочных шифров и генераторов ключевого расписания, впервые представлен как инструмент оценивания перемешивающих свойств алгоритмов хэширования. Особенность применения МГП к хэш-функциям связана с неочевидностью построения перемешивающих матриц, характеризующих зависимость битов сгенерированного хэш-значения от битов исходного сообщения. Для хэш-функций MD4, MD5, SHA-1, SHA-256 построены перемешивающие
more » ... перемешивающие матрицы порядка 512 + n, где n длина блока, с которым оперирует односторонняя функция сжатия алгоритма хэширования при обработке 512-битового блока входного сообщения (n = 128 для MD4 и MD5, n = 160 для SHA-1 и n = 256 для SHA-256). К исследованным характеристикам перемешивания относятся локальные экспоненты перемешивающих матриц, то есть для каждой матрицы M определено наименьшее натуральное число γ, такое, что при любом натуральном τ γ положительны все столбцы матрицы M τ с номерами 513, 514, . . . , 512 + n. Значения локальных экспонентов являются нижними оценками числа итераций, после которых каждый бит сгенерированного хэш-значения может существенно зависеть от всех битов исходного сообщения. Полученные значения (γ = 21 для MD4, MD5, SHA-256 и γ = 23 для SHA-1) косвенно свидетельствуют о схожих криптографических качествах рассмотренных алгоритмов хэширования, несмотря на варианты их усиления за счёт увеличения длины блока и усложнения функции сжатия. Ключевые слова: алгоритмы хэширования, структура Меркла Дамгарда, матрично-графовый подход, перемешивающие свойства. Введение В основе принципа перемешивания, важного для многих криптографических алгоритмов, лежит существенная нелинейная зависимость выходных данных от элементов входа. Для оценки множества существенных переменных композиции преобразований векторного пространства применяется матрично-графовый подход, теоретические основы которого изложены в [1]. Глубина итерации преобразования, при которой каждый бит выходного значения может зависеть от всех битов входа, оценивается снизу значением экспонента примитивного перемешивающего орграфа. В течение последних лет МГП нашёл успешное применение для исследования свойств итеративных блочных шифров и генераторов ключевого расписания [2 -4], для которых перемешиваю-
doi:10.17223/2226308x/12/33 fatcat:b6hc4ya65neqhcdatpszzvvmdm