Functional Divergence of Delta and Mu Opioid Receptor Organization in CNS Pain Circuits

Dong Wang, Vivianne L. Tawfik, Gregory Corder, Sarah A. Low, Amaury François, Allan I. Basbaum, Grégory Scherrer
<span title="">2018</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/5lze265mrrcddlccx7zpfjyjwi" style="color: black;">Neuron</a> </i> &nbsp;
Highlights d DOR and MOR segregate in dorsal horn interneurons, and amygdalar and cortical neurons d DOR and MOR are co-expressed in dorsal horn projection neurons and in ventral horn d MOR is not co-degraded with DOR in neurons that coexpress both receptors in vivo d DOR in SOM+ dorsal horn interneurons controls mechanical pain and but not heat pain SUMMARY Cellular interactions between delta and mu opioid receptors (DORs and MORs), including heteromerization, are thought to regulate opioid
more &raquo; ... lgesia. However, the identity of the nociceptive neurons in which such interactions could occur in vivo remains elusive. Here we show that DOR-MOR co-expression is limited to small populations of excitatory interneurons and projection neurons in the spinal cord dorsal horn and unexpectedly predominates in ventral horn motor circuits. Similarly, DOR-MOR co-expression is rare in parabrachial, amygdalar, and cortical brain regions processing nociceptive information. We further demonstrate that in the discrete DOR-MOR co-expressing nociceptive neurons, the two receptors internalize and function independently. Finally, conditional knockout experiments revealed that DORs selectively regulate mechanical pain by controlling the excitability of somatostatin-positive dorsal horn interneurons. Collectively, our results illuminate the functional organization of DORs and MORs in CNS pain circuits and reappraise the importance of DOR-MOR cellular interactions for developing novel opioid analgesics. 90 Neuron 98, 90-108, April 4, We thank Brigitte Kieffer for providing Oprd1 egfp/egfp , Oprd1 lox/lox , and Oprm1 mcherry/mcherry reporter mice, Tom Jessell for providing En1 Cre ; Rosa26 LSL-tdTomato mice, and David Julius for the anti-P2Y12 antibody. AUTHOR CONTRIBUTIONS D.W. performed spinal cord slice electrophysiology, retrograde tracing, and agonist-induced receptor internalization experiments. D.W.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.neuron.2018.03.002">doi:10.1016/j.neuron.2018.03.002</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/29576387">pmid:29576387</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC5896237/">pmcid:PMC5896237</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/t3hefs666nco5ftvvwdybsjyt4">fatcat:t3hefs666nco5ftvvwdybsjyt4</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20201107194015/https://escholarship.org/content/qt02d713fs/qt02d713fs.pdf?t=qaoe0g" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/d0/0a/d00af43344ef40246c27cd7867e92ffcc3b22ef4.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.neuron.2018.03.002"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> elsevier.com </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5896237" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>