
PDS Cloud: Long Term Digital Preservation in the Cloud

Simona Rabinovici-Cohen
IBM Research – Haifa
Haifa 31905, Israel
simona@il.ibm.com

John Marberg
IBM Research – Haifa
Haifa 31905, Israel

marberg@il.ibm.com

Kenneth Nagin
IBM Research – Haifa
Haifa 31905, Israel

nagin@il.ibm.com.com

David Pease
IBM Research – Almaden

San Jose, CA 95120, USA
pease@almaden.ibm.com

Abstract— The emergence of the cloud and advanced object-
based storage services provides opportunities to support novel
models for long term preservation of digital assets. Among
the benefits of this approach is leveraging the cloud’s inherent
scalability and redundancy to dynamically adapt to evolving
needs of digital preservation. PDS Cloud is an OAIS-based
preservation-aware storage service employing multiple hetero-
geneous cloud providers. It materializes the logical concept of
a preservation information-object into physical cloud storage
objects. Preserved information can be interpreted by deploying
virtual appliances in the compute cloud provisioned with cloud
storage data objects together with their designated rendering
software. PDS Cloud has a hierarchical data model supporting
independent tenants whose assets are organized in multiple
aggregations based on content and value. Continuous changes
to data objects, life-cycle activities, virtual appliances and cloud
providers are applied in a manner transparent to the client.
PDS Cloud is being developed as an infrastructure component
of the European Union ENSURE project, where it is used for
preservation of medical and financial data.

Keywords-clouds; data storage systems; platform virtualiza-
tion; information management;

I. INTRODUCTION

Cloud technology is emerging as an infrastructure suit-
able for building large and complex systems. Storage and
compute resources provisioned from converged infrastruc-
ture and shared resource pools present a cost-effective al-
ternative to the traditional in-house data center. The cloud
provides new levels of scalability, elasticity and availability,
and enables simple access to data from any location and
any device. Moreover, the cloud exposes a data model of
objects that include data integrated with its user-defined and
system-defined metadata as a single unit. Thus, the cloud
is an attractive platform for a new type of scalable fixed
content applications that require rich metadata.

Long Term Digital Preservation (LTDP) is the ability to
sustain the understandability and usability of digital objects
in the distant future regardless of changes in technologies
and in the “designated communities” that create and con-
sume these digital objects. A growing number of organi-
zations now have a requirement to preserve large volumes
of digital content for decades while maintaining access to
it. Regulatory compliance and legal issues require preserva-
tion of email archives, medical records, financial accounts,
aircraft designs, oil-field data, and more.

The LTDP challenge can be divided into bit preservation
and logical preservation. Bit preservation is the ability to
retrieve the bits in the face of physical media degradation
or obsolescence, corruption or destruction due to errors or
malicious attacks, or even environmental catastrophes such
as fire and flooding. Logical preservation involves preserv-
ing the understandability and usability of the data, despite
changes that will take place in servers, operating systems,
data management products, applications and even users over
the long term. Additionally, logical preservation needs to
maintain the provenance of the data, along with its authen-
ticity and integrity, so that current and future systems can
ensure that only legitimate users access that data. Most data
subject to long term preservation is fixed content that hardly
changes once written. Due to its nature, this kind of data is
typically accessed infrequently.

The core standard for digital preservation systems is Open
Archival Information System (OAIS), an ISO standard since
2003, revised in 2012 (ISO 14721:2012) [1]. OAIS speci-
fies the terms, concepts and reference models for a system
dedicated to preserving digital assets for a designated com-
munity. OAIS defines a functional model that describes the
entities in a long term digital preservation system and the
flows among these entities. One of the main concepts of
OAIS is the Archival Information Package (AIP), which is
the basic object stored in the archival storage of a preserva-
tion system. The AIP is a composite object that includes the
core data being preserved and additional metadata needed in
the preservation services. PDS Cloud serves as an enhanced
archival storage that contains the services and functions used
for storage, retrieval and management of AIPs.

LTDP can benefit from cloud technology. With its many
vendors, open interfaces and subscription payment model,
cloud storage offers the flexibility needed to address the
dynamically evolving requirements of preservation. The po-
tentially unlimited capacity provides inherent scalability and
redundancy. Likewise, the traditional notion of investing in
high end storage may not always be economically feasible
or desirable. In the long run, the ability to easily switch
between different vendors is a key factor in ensuring the
economical viability of any preservation solution. Finally,
cloud storage is sometimes positioned as well suited for
latency-tolerant applications such as backup and archiving,



thus making it attractive for digital preservation repositories.
A key notion of LTDP is that preserved information con-

tent needs to be interpretable and understandable in the fu-
ture (logical preservation). The importance of most digital
data is not its original state. Rather its value lies in the infor-
mation that it conveys. In other words, its bits are mutable as
long as it retains the valued information. For the purpose of
interpreting evolving data formats, virtual appliances (VAs)
running in the compute cloud and built from readily available
components are a viable alternative to specialized local em-
ulation environments. With this paradigm, VAs will evolve
in the same ecosystem as the data being supported. They
are maintained in a manner transparent to users, who are
no longer required to be involved in altering the way they
access the data as it keeps transforming. Support of VAs
thereby becomes an integrated aspect of the preservation
environment in the cloud.

Our main contribution is the definition of PDS Cloud
(Preservation DataStores in the cloud), an OAIS-based
preservation-aware storage service in a multi-cloud environ-
ment. Compared to existing cloud storage, or even traditional
archival systems, PDS Cloud supports logical preservation
and materializes the concept of logical preservation informa-
tion object into physical cloud storage objects. It constitutes
a cloud broker that interconnects between the OAIS entities
and the multiple diverse clouds. It defines a way to ensure
grouping of metadata with data for the long term that helps
automate preservation processes and perform them close to
the data.

PDS Cloud has a hierarchical data model supporting in-
dependent tenants whose assets are organized in multiple
aggregations based on content and value. Each aggregation
has a separate preservation profile that is reconfigurable dy-
namically and transparently as requirements keep changing.
The preserved content can be accessed using virtual appli-
ances provisioned with data objects from the storage cloud
together with the designated rendering software.

The research on PDS Cloud was initiated in the ENSURE
project (Enabling kNowledge, Sustainability, Usability and
Recovery for Economic Value) [2]. This is an European
Union FP7 project which aims at extending the state of the
art in digital preservation, focusing on business and scientific
use cases, such as health care and financial data. PDS Cloud
is implemented as the storage infrastructure component of
the ENSURE experimental prototype.

II. CLOUD USABILITY GAP ANALYSIS

We have surveyed several existing cloud platforms, in re-
gard to their usability for digital preservation, considering
the needs of PDS Cloud as a preservation storage services
layer. The purpose of this study was to evaluate the capa-
bilities of the candidate platforms, identify the important
differences among them, and understand what functionality
can be exploited for preservation needs. The main focus

of the study is storage cloud capabilities, but our require-
ments include also compute cloud functionality, specifically
the ability to publish and deploy virtual appliances that are
used for interpretation of preservation objects. It became
evident from our study that many of the relevant features
of the multiple platforms are very similar, if not identical.
Consequently, the platforms also share similar shortcomings.

• Bit reliability: Guarantees of bit reliability in the cloud
are insufficient for preservation systems. Storage cloud
platforms generally perform a fixity check upon storing
an object, but do not have an option to repeat this check
periodically at defined intervals. Also, regulatory require-
ments for digital preservation may entail performing fixity
using multiple algorithms, whereas cloud platforms usu-
ally support one predefined method.

• Data lock-in: Cloud systems currently suffer from data
lock-in, where there are no easy means to get the data
out of the system in its entirety, reliably and efficiently.
This poses a great risk as services providers may go out
of business or become unreliable over time.

• Certification and trust: Storage clouds lack support for
auditing, certification and trust, including secure access.
This is critical in preservation of commercial and business
oriented data where there is a need to provide evidence of
regulatory compliance. Specifically, preservation related
regulatory requirements entail support for data encryp-
tion, anonymization, periodic auditing (including fixity),
replication, versioning, and more.

• Metadata: One of the key concepts in the OAIS model
for preservation is the extensive use of metadata, strongly
coupled with the raw data as part of the AIP. Moreover,
metadata is likely to change and grow significantly in size
during the extended lifetime of the AIP. Storage clouds
today have rather limited support of metadata. The allow-
able space for metadata (per object) is much too small
for the extensive size of preservation metadata. A related
issue is the lack of capabilities in most clouds for search
on metadata, i.e., the ability to filter objects by tags. Fur-
ther, some clouds do not support update of metadata alone
without also incurring the data transfer cost of its data.

• Event tracking: Storage clouds do not capture events that
are part of the object provenance and need to be recorded
for preservation, such as access to objects, media refresh
events, etc. This is particularly crucial in the cloud, be-
cause data in the cloud can be shared widely. Provenance
is a means for consumers to verify data authenticity or
identity. It is of importance to keep the provenance to-
gether with the data, to guarantee consistency.

• Storage and compute synergy: Computational support
is needed for preservation, as storage is active over time.
Data Management functionalities may be offered trans-
parently in the cloud (e.g., handling data replication and



disaster recovery). This is insufficient for a digital preser-
vation solution, since data migration and transformation
are an integral part of the preservation digital asset life-
cycle, and should be configurable and operable by the
client. In the cloud, a viable approach would be to exploit
compute cloud services in conjunction with cloud storage.

• Logical preservation: Preservation is more than just en-
suring the bit integrity of the object content. It must also
support logical data preservation, so that the content is un-
derstandable in the future. Today, the cloud environment
does not have built-in support for logical preservation.
Notwithstanding these issues, cloud storage provides a

scalable, sound and cost-effective infrastructure that is es-
sential for preservation solutions. The selection of the cloud
platforms to be supported by PDS Cloud is influenced by
the intent to offer clients a variety of cloud platforms with
diverse deployment characteristics. Specifically, there are
trade-offs between a locally deployed private cloud and
a public enterprise cloud deployed by a service provider.
Among others, this affects security-related requirements,
scalability and elasticity, cost, as well as performance.

The PDS Cloud architecture presented in subsequent sec-
tions attempts to mitigate many of the gaps identified here,
as will be pointed out in the discussion. Additional aspects
of our comparative evaluation are presented in the expanded
version of this work [3].

III. PDS CLOUD ARCHITECTURE

The gap analysis in Section II reveals that simply “throw-
ing” data onto the cloud is not an adequate solution for
digital preservation repositories, and more advanced man-
agement and reliability mechanisms are needed; thus PDS
Cloud is designed to overcome some of these gaps. PDS
Cloud supports logical preservation and materializes the log-
ical concept of a preservation information-object into a phys-
ical storage object. It is motivated by the idea that digital
preservation systems will be more robust and have lower
probability for data corruption or loss if preservation-related
functionality is offloaded to the storage. Another goal is to
support automation of preservation processes.

The foundations of PDS Cloud were established in PDS
[4], a preservation storage architecture using Object Storage
Devices (OSD). Here the scope is expanded and adapted for
the cloud environment. Moreover, new cloud-specific goals
and features are added. The main additional goals of PDS
Cloud are:
• Support access to multiple cloud storage and cloud com-

pute platforms, as well as enable migration of data
between different clouds. This includes using multiple
clouds concurrently, while taking advantage of special
capabilities in each platform.

• Provide a flexible data model for a multi-tenant multi-
cloud environment, with configurable data management

capabilities that can adhere to diverse aggregations of dig-
ital assets, having different requirements for preservation
that can change over time.

• Enhance future understandability of content by support-
ing data access using cloud based virtual appliances. The
virtual machine instance is created from a previously pub-
lished image or from readily available components, and
provisioned with the desired preservation data content and
the designated software needed to render the data.

• Offer advanced OAIS-based services, such as fixity (in-
tegrity) checks, provenance and auditing that complement
the generic clouds capabilities. Also, support complex in-
terrelated objects in the cloud and manage relationships
and links while maintaining referential integrity.
The PDS Cloud architecture and its components are il-

lustrated in Figure 1. The dotted box components are in-
tended for future implementation, and described here briefly
to show their context in the overall picture.

Figure 1. PDS Cloud high-level architecture

PDS Cloud is architected as an intermediate service layer.
It constitutes a broker that interconnects between OAIS en-
tities and the multiple clouds. On the front end, PDS Cloud
exposes to the client a set of OAIS-based preservation ser-
vices such as ingest, access, delete and preservation actions
on OAIS AIPs. On the back end it leverages heterogeneous
storage and compute cloud platforms from different vendors.

AIPs may be stored on multiple clouds simultaneously
to exploit different storage cloud capabilities and pricing
structures, and to increase data survivability.

We assume user authentication and authorization to the
preservation system are performed in higher levels of the
runtime environment, prior to invoking PDS Cloud. Thus,
PDS Cloud can safely perform the requested operations.

PDS Cloud is divided into two main layers:



• Multi-Cloud Service – handles access to a heterogeneous
set of cloud storage and compute platforms. This layer is
agnostic to preservation.

• Preservation Engine – provides preservation function-
ality for AIPs. It accepts requests via the PDS Cloud
external interface and services them, utilizing the multi-
cloud service underneath.

A. Multi-Cloud Service

The architecture supports deployment of multiple clouds
from different vendors. Further, we emphasize the synergy
between cloud storage and cloud compute for access to pre-
served data. Heterogeneity allows the user to experiment
with diverse technologies, and to examine interoperabil-
ity across space that will hopefully lead to interoperability
across time, namely preservation. To implement this method-
ology efficiently, we separate the multi-cloud service from
the preservation engine.

PDS Cloud supports public and private clouds. Moreover,
it enables storing high value data in multiple clouds at the
same time to increase resiliency over time. This is especially
important for public clouds where there is dependence on
a third party. In our implementation, we are initially ex-
perimenting with Amazon [5] S3 storage and EC2 compute
(public cloud), and Openstack [6] Swift storage and Nova
compute (private cloud).

We leverage jclouds [7], an open source cloud interface
library, as the basis for the multi-cloud service. It comprises
a unified interface (multi-cloud interface component) and
a set of drivers that implement the interactions with the
individual storage and compute clouds underneath.

B. Preservation Engine

The preservation engine provides all the preservation re-
lated functionality. At the top is the Request Handler which
is the server side of the HTTP protocol, interacting with
PDS Cloud clients. It receives each HTTP request, parses
it, validates it, then hands it over to one of the other PDS
Cloud services for processing. At the bottom of the preserva-
tion engine resides the Cloud Mapping Handler that handles
mapping from AIPs to the cloud object model (see Sec-
tion V). It further utilizes the Storage Handler and the VA
Handler, which interact with the multi-cloud service layer
(jclouds), to handle all cloud operations related to storage
or virtual appliances.

The core of the preservation engine comprises four main
services. AIP Service is in charge of ingest, access and
delete of various types of AIPs (data, RepInfo, etc.) and
orchestrates the management of the AIP metadata as defined
in OAIS. It generates unique AIP identifiers, and manages
provenance and relations among the various AIPs. Addition-
ally, in the future it will utilize the SIRF Handler to support
SIRF [8] containers in the cloud. SIRF (Self-contained Infor-
mation Retention Format) is a storage container format for

preservation objects that provides a catalog with metadata
related to the entire contents of the container as well as to
the individual objects and their interrelationship.

Admin Service handles definition and profiling of tenants,
aggregations and policies. It engages the Registry Handler
to maintain this operational information in a non-volatile
registry (see also discussion on data model in Section IV).

Migration Service, which is intended for future implemen-
tation, supports logical preservation by coordinating trans-
formations of AIPs from one format to another as require-
ments and data handling capabilities evolve.

Fixity and Audit Service handles flexible periodic fixity
(integrity) checks on AIPs using a choice of multiple fixity
algorithms, to ensure the bits are not altered. This is re-
quired since, as pointed out in Section II, the bit reliability
guaranteed by the underlying storage clouds is generally not
strong and durable enough for long term bit preservation.
The service can also be used for system audits by a third
party.

The AIP Service, Migration Service and Fixity Service
sometimes require performing data-intensive computational
tasks, such as validation, transformation, fixity checks, de-
identification, and encryption. It is much more efficient,
cheaper and more reliable to do these tasks near the data,
namely instead of moving the data from storage to a process-
ing machine, move the computation module to the storage
server and run it there. Computational modules deployable
in storage are called “storlets” [4]. We plan to develop ex-
tensions for open source storage clouds, such as Openstack
Swift, to support storlets. The Storlet Handler will manage
the deployment of storlets for preservation actions, which
later will execute periodically or when explicitly triggered.

IV. HIERARCHICAL DATA MODEL

Enterprises using an archiving storage service typically
organize their data in multiple collections having different
defined policies and facilities for their data management,
based on criteria such as information type, value to the
organization, and storage cost. As the needs of the orga-
nization evolve over time, the data management profile of
a collection should be dynamically configurable. Also, as
cloud technology advances, it should be possible to easily
migrate data to another cloud platform and leverage new
cloud services. Ideally, any changes in data management
should be completely transparent to the user of the storage
service.

The goal is to enable transparent and dynamic configu-
ration of data management in a multi-cloud multi-tenancy
environment. Users should be able to access the data with-
out needing to know underlying details such as the iden-
tity of the storage cloud providers, and should not have to
adapt continuously to changes in configuration. Moreover,
the storage service could comprise an engine that initiates
data management actions autonomously and transparently.



Data stored in the cloud is commonly accessed using a
hierarchical naming path. The data model typically consists
of containers and objects, but may vary significantly among
platforms. This data model is adequate for a simple data
storage platform, where the user works with resources in a
specific storage cloud, but it does not address the require-
ments of a multi-cloud/multi-tenancy storage service.

PDS Cloud uses a logical data model and uniform hier-
archical resource naming path for entities in a preservation
storage system. Details of data management configuration
are hidden from the user, yet integrated into the model. The
model is logical in the sense that it is not tied to any spe-
cific implementation. It lends itself to different realizations,
depending on the capabilities of the cloud storage platforms
being used.

The top-down hierarchy consists of: tenants, aggregations,
dockets, and objects. This can be seen in Figure 2.

Figure 2. Data model in PDS Cloud

Tenant is an enterprise or organization that engages in
storing data in the cloud. Each tenant constitutes an inde-
pendent information domain, having separate administrative
ownership, policies and users. Data assets belonging to dif-
ferent tenants are logically insulated from each other.

Aggregation is a configuration profile, defining the poli-
cies and capabilities for managing the data in storage. It
specifies the details of one or more cloud platforms (address,
credentials, etc.) that are being used for physical storage. It
also designates various characteristics for maintaining and
accessing data objects, such as integrity checking procedures
or rendering properties, as relevant for the specific use case.
Each aggregation belongs to a single tenant, and its configu-
ration is tailored to the tenant’s requirement and regulations.

Docket is a grouping of objects analogous to a directory
in a file system. A docket name is not unique, and may be
reused under different aggregations.

Object is the fundamental preserved entity. In the context
of OAIS-based preservation, this refers to an AIP. A given
object belongs in a single docket and a single aggregation.
An object is replicated in all the cloud platforms configured
by the aggregation in which it belongs. An object has a name
(as specified in the hierarchical path) and a Logical Id. Each
Logical Id is globally unique. When an object is moved to
a different aggregation or docket, its Logical Id remains the
same. This can be exploited for referential integrity.

Aggregations are configured based on the needs of the
tenant. The objects that belong in a given aggregation can
be viewed as a collection of information assets that share
the same characteristics and are managed together and in the
same fashion. In that sense, aggregations can be considered
as classes of service.

Dockets and objects are logical entities. A docket is dis-
tinct from a cloud container (also called bucket in some
platforms), whereas a container has physical existence. The
mapping between logical docket and physical container need
not be one-to-one. Further, it does not have to be universal,
and may be tailored for the requirements and limitations of
each individual cloud platform. Similarly, an object in the
naming hierarchy may or may not correspond to a single
stored object in the cloud (for example, depending on object
size limits). Details of the physical organization could be
specified in the aggregation.

Users access the data without being aware of configuration
details in the aggregation. A storage service layer, such as
PDS Cloud, is responsible for interpreting the aggregation
profile and engaging the relevant data management facilities.
This includes accessing the specific cloud platforms desig-
nated by the aggregation and mapping the logical dockets
and objects to the physical name space of each specific
cloud. Changes in aggregation configuration over time af-
fect the handling in the storage service layer, but remain
transparent to the user application interface.

V. MAPPING TO CLOUD STORAGE

PDS Cloud provides a brokering service that intermediates
between OAIS entities and the diverse storage clouds. On
the client side, PDS Cloud exposes a logical hierarchical
data model that comprises tenants, aggregations, dockets and
AIPs, as discussed in Section IV. On the storage side, it
leverages multiple cloud platforms that typically use a hier-
archical model consisting of users, containers (or buckets)
and objects with key-value pairs (metadata).

The Cloud Mapping Handler relates the two models. Ten-
ants are mapped to users; dockets are mapped to cloud con-
tainers. Specifically in case of Amazon S3, the container
name encodes the tenant name, geographical location, and
docket name. This is because in Amazon the container name
needs to be unique across all users and geographical loca-
tions. The aggregation name is represented as metadata (key-
value pair) associated with cloud objects that implements



each AIP. Mapping the AIP, the basic artifact in archival
storage, is more involved since an AIP is a composite logical
object with multiple sub-parts. We first describe the structure
of the AIP, then the mapping to the cloud.

A. AIP Logical Structure

The logical structure of the AIP as defined in OAIS is
illustrated in Figure 3. The AIP contains zero or one Con-
tent Information compartments and one or more Preservation
Description Information (PDI) compartments.

Figure 3. OAIS AIP logical structure

More specifically, Content Information comprises the
Content Data Object (CDO) and the Representation Infor-
mation (RepInfo). CDO is the raw data being the focus of
the preservation. RepInfo is information on the hardware and
software environment needed to render the CDO intelligible
to its designated community.

The PDI compartment maintains metadata describing the
past and present states of the Content Information, covering
five aspects: Identifying the AIP uniquely and permanently
(reference); documenting its history and origin (provenance);
describing the relationship to environment (context); ensur-
ing bits have not been altered in an undocumented manner
(fixity); and specifying access restriction (access rights).

B. AIP Mapping

The AIP logical structure reveals a composite entity with
multiple integral sub-parts. If any sub-part is missing, access
to the entire AIP might be lost. Thus, all the sub-parts should
best be co-located in storage. This also simplifies migration
of the AIP across storage services.

The AIP is materialized by the following physical orga-
nization. At the root is a manifest, which references all the
other sub-parts. The manifest also contains the AIP meta-
data. Sub-parts include one or more CDOs, and optional
metadata sub-parts in case the manifest cannot contain all
the required metadata.

To maintain co-location of all the physical sub-parts we
have considered two approaches. The first approach is to
create a tarball of all the AIP sub-parts and store it as a single
cloud object. Key-value pairs of this cloud object are utilized
to keep frequently accessed small-sized metadata, such as
AIP identifiers, aggregation name, RepInfo reference, and

fixity modules and values. The advantage of this approach is
that it spares PDS Cloud from having to synchronize among
the various sub-parts (referential integrity). The disadvantage
is that usability and performance are compromised, as clients
need to extract the tarball when accessing the preserved data.
Moreover, clients may need to download the entire tarball
to retrieve just the metadata; this, however, is viewed as
an infrequent situation because the most needed metadata
is kept in key-value pairs of the cloud object, which are
accessible separately. It should be noted that typically it is
not feasible to save all the AIP metadata in key-value pairs
because of imposed size limits. Also, in some clouds (e.g.,
Amazon S3), in order to update just the key-value pairs, the
entire object must be uploaded again. We consider this a
limitation of those clouds that is expected to be relaxed in
the future.

In the second approach, each AIP sub-part is mapped to
a separate cloud object, such that the object names of all
sub-parts share the same prefix, thereby indicating their in-
clusion in the same AIP. In this case, the frequently used AIP
metadata is kept in key-value pairs of the manifest object.
The main advantage of this approach is that each sub-part
can be stored and accessed in its native format, and only the
relevant sub-parts need to be downloaded. The disadvantage
is that PDS Cloud has to synchronize among the various sub-
parts and maintain referential integrity, whereas the cloud is
not aware of the connection between the sub-parts.

While the second approach is probably more flexible and
efficient, it is harder to implement because of the need to
maintain multiple synchronized cloud objects. Thus, in PDS
Cloud we have adopted the first approach. It is anticipated
that in the future some cloud platforms will support com-
pound objects, i.e. sets of cloud objects treated as one entity
with internal referential integrity.

C. RepInfo AIP
Representation Information (RepInfo) is an important

class of preservation metadata, describing how to interpret
the content data. An AIP may reference multiple RepInfos;
this allows several view paths to interpret the same data.

In PDS Cloud, RepInfo is kept as a separate AIP, with
its own unique identifier. Thus, RepInfo can be used as a
shared resource, referenced from multiple data AIPs.

An important example is the RepInfo for a virtual appli-
ance (VA). This RepInfo contains all the information needed
to instantiate a certain VA in the compute cloud. As any
AIP, the VA RepInfo AIP is kept in the storage cloud, and
is referenced by relevant data AIPs. This is used by PDS
Cloud to provide access to the data by means of a VA (see
Section VI).

D. AIP Versions
OAIS defines the concept of version AIP, which is an AIP

resulting from a digital migration that involves transforma-
tion of an existing AIP, namely causing changes to either the



Content Information bits or the PDI bits. The new AIP has a
new identifier and metadata, and is viewed as a replacement
of the source AIP, where the information has been preserved
to the maximum extent practical. The PDI needs to identify
the source AIP and its version, and document what changes
were made and why. Typically, the previous version is also
kept, e.g. for copyright or legal reasons.

In PDS Cloud, multiple AIPs having the same name and
belonging in the same docket are considered versions of the
same base AIP, and are identifiable and distinguishable by a
globally unique persistent Version Id. All versions of a base
AIP share the same AIP Name and Logical Id. Further, each
AIP may be associated with a Parent Id, denoting the Ver-
sion Id of the AIP from which the given version is derived,
thereby inducing a genealogy tree structure on all versions
of the base AIP.

PDS Cloud stores the various versions of the base AIP
in one directory under the associated cloud container. The
genealogy trees are kept in the cloud via key-value pairs
of the version AIP objects, enabling clients to query and
navigate the trees.

VI. VIRTUAL APPLIANCES

Typically, current systems for long term digital data
preservation provide a simple, but not very friendly access
path to the stored data. Users are expected to download
the data from the storage server and then examine it within
their local environment. PDS Cloud enhances future access
to preserved content by leveraging a storage/compute cloud
synergy to automate the provisioning of virtual appliances
running on a compute cloud with data objects preserved in
the storage cloud.

A. Data Rendering and Transformation

A virtual appliance (VA) is a virtual machine image (VM
image) with an operating system and application packaged
together as a pre-installed system image for a virtualized
environment such as KVM, XEN, or VMware. The user runs
the VA on a compute cloud, e.g. Amazon EC2, or Openstack
Nova. In order to make a VA useful it is necessary to provi-
sion its running instances with the user’s unique data. When
this data is stored in cloud storage, as is the case with PDS
Cloud, the user provisions the running instances by copying
the data from cloud storage to the VA. After copying the
data, the VA application does some operation on the data
and presents the results to the user.

PDS Cloud automates the process of utilizing a VA in a
compute cloud to render data stored in the storage cloud. In-
stead of the user/application executing multiple steps: (1) ac-
cess the storage cloud; (2) retrieve data from storage cloud;
(3) access the VA on compute cloud; (4) copy the data to the
VA and possibly transform the data, the system automates
it into a single action. This simplifies the application, yields
better performance and improves robustness.

B. VA Provisioning Automation

A VA is ingested into the system as an OAIS AIP des-
ignated with the role of “Representation Information” (Re-
pInfo). Data AIPs can be associated with a RepInfo VA AIP.
When users request access to the data, the system transpar-
ently provisions the data AIPs on the VA.

PDS Cloud provides a generic interface that hides the
complexity of interacting with multiple heterogeneous com-
pute and storage clouds. The user sends a request to render
data that is stored in the cloud. The data may be tagged with
a preferred VA, or the user may specify a particular VA.

Two data copy methods are provided: PDS Cloud Copy,
and VA Copy.

The PDS Cloud Copy method is simple but less efficient.
PDS Cloud copies the subject data from the storage cloud to
PDS Clouds’s local storage, and then pushes it to the VA on
the compute cloud. The advantage is that PDS Cloud is able
to transform the data before pushing the transformed data to
the VA. For example, to comply with security regulations,
data may need to be anonymized.

The VA Copy method is more efficient. The VA copies
the data directly from the storage cloud to the VA on the
compute cloud. Further optimization can be achieved by col-
locating the VA and the subject data to reduce copy distance.

C. VA Provisioning Performance

Using the VA Copy method, PDS Cloud can dramatically
reduce the time to transfer cloud data objects to a VA by
collocating its VA instances and cloud storage. We did a VA
Copy collocation study using AWS American S3 and EC2.

Figure 4. Comparison of VA Copy vs PDS Cloud Copy

In Figure 4 the VA Copy method is compared to the PDS
Cloud Copy method. As would be expected, VA Copy trans-
fers data much faster than PDS Cloud Copy. This is because
PDS Cloud Copy copies the data twice, first to PDS Cloud
storage and then to the VA, and the data must traverse the
distances between the locations. We also observe that as
data size increases, PDS Cloud Copy exhibits an exponential
increase in the time it takes to transfer the data.



Collocating VA instances and cloud storage is not the only
way that PDS Cloud can reduce VA provision time. It can
also reuse VA instances.

When a VA is first launched it must be copied to a cloud
compute node and brought to running state. Then it is ini-
tialized and all its server daemons are started. A VA instance
can only be provisioned when its ssh server daemon is ac-
tively listening for new ssh client connections.

We refer to a VA prior to being launched as a Cold VA,
and to a VA instance whose server daemons are listening for
new connections as a Hot VA. A Hot VA may be suspended
so that it does not use any CPU cycles and subsequently
resumed to its former state. A suspended VA instance is
called Warm VA.

Figure 5. Comparison of VA provisioning startup time

Figure 5 compares the VA provisioning startup elapsed
times. We observe that PDS Cloud can decrease provision-
ing time significantly by re-using Hot or Warm VAs. Our
experimentation was done on AWS EC2. The average time
to transition a Cold or Warm VA to running state is similar.
We reason that the similarity indicates that EC2 does not
actually copy the VA Image to the compute node, rather
it uses Copy-On-Write. On the other hand, discovering a
Hot VA already in running state takes on average only one
tenth of this time. As stated earlier, transition to running
state is not sufficient to begin provisioning, the VA’s ssh
server daemon must be actively listening for new ssh client
connections. The average elapsed time to complete a client
ssh connection after transitioning to or discovering a VA
in running state varies, depending on the VA’s initial state.
We suggest that the reason a Warm VA’s transition to Hot
VA takes significantly less time than a Cold VA’s transition
is that some of the Warm VA’s state remains in memory,
whereas the Cold VA starts with no state.

More details of the performance analysis can be found in
the expanded version of this work [3].

VII. CONCLUSIONS AND FUTURE WORK

We have presented PDS Cloud, an OAIS-based preserva-
tion aware storage service that engages storage and compute
clouds from diverse providers. The main objective of PDS
Cloud is to maintain understandability of the digital content
(logical preservation) for the long term, adhering to dynamic
changes in requirements and evolving technology. The pa-
per discusses the architecture of PDS Cloud and its novel
features, in particular the data model, the mapping of AIP
to the cloud, and the deployment and data provisioning of
virtual appliances. PDS cloud is currently being developed
as the storage infrastructure of a larger experimental runtime
environment called ENSURE, modeled after OAIS, and has
been demonstrated to the EU Commission.

Future plans will continue the vision of offloading ad-
vanced preservation functions to the storage. In particular,
we intend to implement a storlet engine for Openstack Swift
to perform data intensive tasks locally within the storage, or
as close as possible to it.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement№ 270000.

REFERENCES

[1] Reference Model for an Open Archival Information Sys-
tem (OAIS) - Recommended Practice, CCSDS 650.0-
M-2 (Magenta Book) Issue 2. Also available as ISO
Standard 14721:2012. The Consultative Committee for
Space Data Systems (CCSDS), June 2012.

[2] ENSURE: Enabling kNowledge Sustainability, Usability
and Recovery for Economic value, EU FP7 project. URL
http://ensure-fp7.eu.

[3] S. Rabinovici-Cohen, J. Marberg, and K. Nagin. Preser-
vation DataStores in the Cloud (PDS Cloud): Long term
digital preservation in the cloud. Technical Report H–
0318, IBM Research – Haifa, January 2013.

[4] S. Rabinovici-Cohen, M. Factor, D. Naor, L. Ramati,
P. Reshef, S. Ronen, J. Satran, and D. Giaretta. Preser-
vation DataStores: New storage paradigm for preserva-
tion environments. IBM Journal of Research and De-
velopment, Special Issue on Storage Technologies and
Systems, 52(4/5):389–399, July/September 2008.

[5] Amazon Web Services. URL http://aws.amazon.com.
[6] Openstack cloud software. URL http://openstack.org.
[7] Jclouds. URL http://www.jclouds.org.
[8] S. Rabinovici-Cohen, M.G. Baker, R. Cummings,

S. Fineberg, and J. Marberg. Towards SIRF: Self-
contained Information Retention Format. In SYSTOR
2011: Proceedings of the 4th Annual International Sys-
tems and Storage Conference, Haifa, Israel, May 2011.

http://ensure-fp7.eu
http://aws.amazon.com
http://openstack.org
http://www.jclouds.org

	Abstract
	Keywords

	Introduction
	Cloud Usability Gap Analysis
	PDS Cloud Architecture
	Multi-Cloud Service
	Preservation Engine

	Hierarchical Data Model
	Mapping to Cloud Storage
	AIP Logical Structure
	AIP Mapping
	RepInfo AIP
	AIP Versions

	Virtual Appliances
	Data Rendering and Transformation
	VA Provisioning Automation
	VA Provisioning Performance

	Conclusions and Future Work
	Acknowledgment
	References

