Enhancing network modularity to mitigate catastrophic forgetting

Lu Chen, Masayuki Murata
2020 Applied Network Science  
AbstractCatastrophic forgetting occurs when learning algorithms change connections used to encode previously acquired skills to learn a new skill. Recently, a modular approach for neural networks was deemed necessary as learning problems grow in scale and complexity since it intuitively should reduce learning interference by separating functionality into physically distinct network modules. However, an algorithmic approach is difficult in practice since it involves expert design and trial and
more » ... ror. Kashtan et al. finds that evolution under an environment that changes in a modular fashion leads to the spontaneous evolution of a modular network structure. In this paper, we aim to solve the reverse problem of modularly varying goal (MVG) to obtain a highly modular structure that can mitigate catastrophic forgetting so that it can also apply to realistic data. First, we confirm that a configuration with a highly modular structure exists by applying an MVG against a realistic dataset and confirm that this neural network can mitigate catastrophic forgetting. Next, we solve the reverse problem, that is, we propose a method that can obtain a highly modular structure able to mitigate catastrophic forgetting. Since the MVG-obtained neural network can relatively maintain the intra-module elements while leaving the inter-module elements relatively variable, we propose a method to restrict the inter-module weight elements so that they can be relatively variable against the intra-module ones. From the results, the obtained neural network has a highly modular structure and can learn an unlearned goal faster than without this method.
doi:10.1007/s41109-020-00332-9 fatcat:3wqc7beworfg5lmafo6aqjowu4