Downregulation of miR-10b promotes osteoblast differentiation through targeting Bcl6

Jizhou Yang, Shaojie Wang, Fengxian Wang, Xiaohong Mu, Yi Qu, Ziyi Zhao, Xing Yu
2017 International Journal of Molecular Medicine  
MicroRNAs (miRNAs or miRs) have been shown to play a critical role in osteoblast differentiation. miR-10b has been found to be downregulated during osteoblast differentiation; however, its precise effect on osteoblast differentiation remains unknown. In this study, we aimed to investigate the potential role of miR-10b and the potential underlying mechanism in regulating osteoblast differentiation. We found that miR-10b was downregulated during osteoblast differentiation. Overexpression of
more » ... b inhibited osteoblast differentiation, whereas the suppression of miR-10b promoted osteoblast differentiation. Bioinformatics analysis and the dual-luciferase reporter assay demonstrated that miR-10b could target the 3'-untranslated regions of B cell lymphoma 6 (Bcl6) which is an important regulator of osteoblast differentiation. Real-time quantitative polymerase chain reaction and western blot analysis showed that miR-10b directly regulated Bcl6 expression. Further experiments showed that the overexpression of miR-10b increased the expression of signal transducer and activator of transcription 1 (STAT1) and blocked Runt-related transcription factor 2 (Runx2) nuclear translocation, whereas miR-10b suppression showed an opposite effect. Moreover, the miR-10b suppression-induced effects were partially reversed by Bcl6 knockdown. Taken together, our study suggests that miR-10b contributes to osteoblast differentiation through targeting Bcl6, providing a novel insight into understanding the molecular mechanism underlying osteoblast differentiation and suggesting a potential target for inhibiting bone loss.
doi:10.3892/ijmm.2017.2955 pmid:28440396 fatcat:vd3zbr5bozakhn2unprd4kf3pq