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1 Introduction

A widespread view amongst financial economists is that structural models of credit risk following

Black and Scholes (1973) and Merton (1974), although theoretically appealing, underestimate the

actual default risk discount on credit risky securities. Several studies from the 1980’s onwards

document the models producing credit spreads lower than actual corporate bond spreads.1 A

recent financial innovation, the credit default swap (CDS) permits the measurement of the default

risk component of a corporate issuer in isolation. In addition, CDS are commonly thought to be

less influenced by non-default factors.2 The CDS market thus provides an interesting alternative

source of data to reassess the empirical performance of structural models that by construction

only measure default risk.

For a selection of structural models, we compare predicted levels of credit default swap (CDS)

premia with their market counterparts. In contrast to what has previously found on corporate

bond data, CDS premia are not systematically underestimated. In fact, one of our studied models

has little difficulty on average in predicting their level.

For robustness, we also compare the models’ theoretical bond spreads to their market counter-

parts. CDS contracts are closely related to corporate bonds by an arbitrage argument. A package

of a par floating rate corporate bond and protection bought with a CDS is a risk free investment.

Given that a CDS contract requires no up front payment (i.e. it is unfunded), the comparison

with the bond requires taking into account the funding rate of a bondholder. In practice, this

implies that the relevant measure of the bond yield spread that is comparable to the CDS price is

the spread to the swap curve.3 In contrast most previous empirical research on corporate bonds

use the Treasury curve as a benchmark. As a result we carry out our analysis using reference yield

curves based both on Treasury yields and interest swap rates.

We use a simple building block approach to develop a pricing formula for credit default swaps

(henceforth, CDS). The formula is applied in the framework of three distinct structural models:

Leland (1994), Leland and Toft (1996) and Fan and Sundaresan (2000). By implementing mul-

tiple models, we hope to gauge the robustness of our results to specific model assumptions. An

important difference between our approach and that of Longstaff, Mithal, and Neis (2004) is that

we do not rely on market prices of corporate bonds or CDS as inputs to our estimation. Thus,

we need not assume that CDS prices are driven solely by default risk. Instead, we estimate the

1See Jones, Mason, and Rosenfeld (1984), Jones, Mason, and Rosenfeld (1985), Ogden (1987) and Lyden and
Saranati (2000).

2A recent study of non-default components of CDS premia can be found in Tangy and Yan (2006).
3A more detailed explanation is provided below.
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structural models using firm-specific balance sheet and market data on stock prices, and then

compute the term structures of risk-adjusted default probabilities and the corresponding prices

for corporate bonds and CDS for the same corporate issuer.4 By using pairs of contemporane-

ous transactions and quotes for default swaps and a bond issued by the reference entity, we can

compare the estimated bond yield spreads and CDS spreads with two separate sets of data.

Consistent with previous evidence, the models do systematically underpredict bond spreads

when benchmarked against Treasuries. This is however not the case for spreads computed against

the swap curve. The results based on the swap curve are very similar to the those for default

swaps. This suggests that the documented underestimation of bond spreads may to a large degree

be attributable to the choice of benchmark risk free curve.

In more detail, we find that our three models tend to systematically underestimate bond

spreads and, more importantly, that this is not the case for CDS premia when Constant Maturity

Treasury rates are being used as riskfree benchmark. For our base case specifications, the Leland

(1994) and Fan and Sundaresan (2000) models underestimate bond spreads by 91 and 67 basis

points respectively. The Leland and Toft (1996) model underestimates much less — by ca. 59 basis

points. These numbers are not dissimilar to previous findings by, for example, Eom, Helwege, and

Huang (2004). When we consider CDS premia, a very different picture emerges. On comparison

of model and market CDS premia we find that the Leland (1994) and Fan and Sundaresan (2000)

models underestimate CDS premia by 43 and 19 basis points, much less so than for bonds, in

particular for the latter. The benchmark implementation of the Leland and Toft (1996) actually

underestimates CDS premia by, on average, 2 basis points. However, when swap rates are used

as benchmark, the systematic underestimation by the structural models is not present. The LT

model underestimates mean bond spreads by 2% only, while the underestimation by the L and FS

models is significantly reduced.

In an additional effort to understand the model’s performance, we relate their residuals by

means of linear regressions to default risk and non-default proxies. We find little evidence of

any default risk component in either bond or CDS residuals. For example, credit ratings are

unable to explain residual spread levels. A variable measuring the difference between bond yield

indices of different credit ratings does have explanatory power, however. This may suggest that

our implementation methodology is not properly accounting for risk premia. It could also be a

4We use a maximum likelihood technique developed by Duan (1994) and evaluated by Ericsson and Reneby
(2005). The latter show by means of simulation experiments that the efficiency of this method is superior to the
more common approach used in previous empirical studies on the use of structural models for valuing credit risky
securities. See for example, Jones, Mason, and Rosenfeld (1984), Ronn and Verma (1986) and Hull (2000).
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result of non-default components present in those indices. In the residuals for bonds, we find

evidence of an illiquidity component of between 10 and 20 basis points. CDS residuals reveal no

such component.

Taken together with our results on levels of bond spreads and CDS premia, this is consistent

with reasonably specified structural models being able to capture the default risk priced in bond

and credit derivative markets. Past results on the underestimation of bond spreads may be an

effect of ignoring the funding cost of bond investors.

The remainder of this paper is structured as follows. The following Section introduces the

models and Section 3 the empirical methodology. Thenceforth, section 4 describes both the bond

and CDS datasets. Section 5 draws out the implications of the results and finally, section 6

concludes.

2 Setup

Here we initially present the three structural models that we will study. The ensuing description

is brief and we refer the reader to the original papers for details. These do not, however, treat

the valuation of credit default swaps. Therefore, we utilize a simple building block approach to

demonstrate how to value a CDS and its reference bond.

2.1 The Models

Consider first the common characteristics of the three structural models: Leland (1994), Leland

and Toft (1996) and Fan and Sundaresan (2000). The fundamental variable in all models is the

value of the firm’s assets (the unlevered firm), which is assumed to evolve as a geometric Brownian

motion under the risk-adjusted measure:

dωt = (r − β)ωtdt+ σωtdWt

The constant risk-free interest rate is denoted r, β is the payout ratio, σ is the volatility of the

asset value and Wt is a standard Wiener-process under the risk-adjusted measure.

Default is triggered by the shareholders’ endogenous decision to stop servicing debt. The exact

asset value at which this occurs is determined by several parameters as well as the characteristics

of the respective models, but is always a constant which we denote by L.

The value of the firm differs from the value of the assets by the values of the tax shield and
4



the expected bankruptcy costs. Coupon payments are tax deductible at a rate τ and the realized

costs of financial distress amount to a fraction α of the value of the assets in default (i.e. L). In

this setting, the value of the firm (F) is equal to the value of assets plus the tax shield (T S) less
the costs of financial distress (BK). The value of the firm is, of course, split between equity (E)
and debtholders (D) and thus all models share the following basic equalities:

F(ωt) = ωt + T S(ωt)− BK (ωt)
(1)

= E(ωt) +D(ωt)

Note that the formulae for the components depend on the model, but that they are all independent

of time.

In the interest of brevity, the formulae are relegated to the appendix, and this paper merely

discusses differences between the applied models. First, Leland (1994) is a natural benchmark

model where debt is perpetual and promises a continuous coupon stream C. Financial distress

triggers immediate liquidation and no renegotiation is possible.

In Leland and Toft (1996), the firm continuously issues debt of maturity Υ; therefore, the firm

also continuously redeems debt issued many years ago. Hence, at any given time, the firm has

many overlapping debt contracts outstanding, each serviced by a continuous coupon. Coupons to

individual debt contracts are designed such that the total cash flow to debt holders (the sum of

coupons to all debt contracts plus nominal repayment) is constant. Letting Υ → ∞, the model
converges to the Leland model. For shorter maturities, the need to redeem debt places a higher

burden on the firm’s cash flows. Consequently, the default barrier in the Leland & Toft model

tends to be much higher than in the Leland model for short and intermediate debt maturities.

In Fan and Sundaresan (2000) debt is, as in Leland, single-layered and perpetual but creditors

and shareholders can renegotiate in distress to avoid inefficient liquidations. Consequently, the

default barrier in the former model is typically lower than in its Leland counterpart. To the extent

that equity holders can service debt strategically, bondholder bargaining power is captured by the

parameter η. If the bargaining power is nil, no strategic debt service takes place and the model

converges to the Leland model.
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2.2 Valuing the bond

Next think about what kind of real world ‘debt’ the authors had in mind when building the three

structural models above. A firm’s debt consists of bank loans, bonds, accounts payable, salaries

due, accrued taxes etc. Dues to suppliers, employees and the government are substitutes for other

forms of debt. Part of the price of a supplied good and part of salary paid can be viewed as

corresponding to compensation for the debt that, in substance, it constitutes. The cost of debt

consequently includes not only regular interest payments to lenders and coupons to bondholders,

but also fractions of most other payments made by a company. Clearly, a comprehensive model of

all these payments would not be tractable and we think of the three models as portraying firms’

aggregate debt rather than a particular bond issue — such as the reference obligation of the CDS.

However, we do need a pricing formula which also accounts for the reference obligation — for

robustness, we will let the models price both the CDS and the corresponding bond in order to

investigate whether the overestimation of the spread is indeed smaller in the former case. To this

end, we apply a bond pricing model that takes discrete coupons, nominal repayment and default

recovery into account.5 To express the value of the bond we make use of two building blocks,

a binary option H (ωt, t;S) and a dollar-in-default claim G (ωt, t;S). The former pays off $1 at

maturity S if the firm has not defaulted before that, the latter pays off $1 upon default should

this occur before S; the value of both depend upon the firms asset value ωt and current time t.

The formulae for the binary option and the dollar-in-default claim are, for a given default barrier

L, identical in all three structural models.

Proposition 1 A straight coupon bond. The value of a coupon bond with M coupons c paid

out at times {ti : i = 1..M} is

B (ωt, t) =
M−1X
i=1

c ·H (ωt, t; ti)

+ (c+ P ) ·H (ωt, t;T )

+ψP ·G (ωt, t;T )

The formulae for H and G are given in the appendix.

5This bond pricing model was used in Ericsson and Reneby (2004) and was shown to compare well to reduced
form bond pricing models.
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The value of the bond is equal to the value of the coupons (c), the value of the nominal

repayment (P ) plus the value of the recovery in a default (ψP ). Each payment is weighted with

a claim capturing the value of receiving $1 at the respective date.

Note that the above formula for the reference bond is not directly related to the debt structure

of the firm. Specifically, coupon payments to the bond are unaffected by the strategic debt service

in the Fan & Sundaresan model, and by the debt redemption schedule elaborated in the Leland

& Toft model. The choice of model affects the bond formula solely via the default barrier L.

2.3 Valuing the CDS

A CDS provides insurance for a specified corporate bond termed the reference obligation. The firm

issuing this bond is designated the reference entity. The seller of insurance, the protection seller,

promises, should a default event occur, to buy the reference obligation from the protection buyer

at par.6 The credit events triggering the CDS are specified in the contract and typically range from

failure to pay interest to formal bankruptcy. For the CDS, the protection buyer pays a periodic

fee rather than an up-front price to the seller. When and if a credit event occurs (at time T ), the
buyer is also required to pay the fee accrued since the previous payment. Hence fee payments,

although due at discrete intervals, fit nicely into a continuous modelling framework. Note also

that there is no requirement that the protection buyer actually own the reference obligation, in

which case the CDS is used for speculation rather than protection.

The valuation of a CDS thus involves two parts, the premium paid by the protection buyer

and the potential buy-back by the protection seller. Letting T ∗ denote maturity of the CDS and

Q the fee, the value of the premium at time t is

E0
∙Z T ∗

t

e−r(s−t) ·Q · IT ≮s ds
¸

where we let IT ≮s be the indicator function for nondefault before s and E0 denotes the expectations

under the standard pricing measure. The maturity of the credit default swap is typically shorter

than the maturity of the reference obligation (T ). In fact, the by far most common maturity in

practice is T ∗ = 5 years.

Assume that a bond holder in the event of bankruptcy recovers a fraction ψ of par, P . The

second part of the value of a CDS therefore is the expected value of receiving, upon default of the

6In practice, there may be cash settlement or delivery of another (non-defaulted) bond in place of direct purchase
but we refrain from that complication here.
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firm, the difference between the bond’s face value and its market price, P − ψP :

E0
£
e−r(T −t) · (P − ψP ) · IT <T ∗

¤
The expectation is conditional on default occurring before maturity of the CDS. Using the previ-

ously outlined building blocks, we can formalize the value of a CDS in the following proposition.

Proposition 2 Assume a CDS involves receiving an amount P − ψP if T < T ∗, and paying a

continuous premium q until min (T ∗, T ). The value of the CDS is

CDS (ωt, t) = (P − ψP ) ·G (ωt, t;T ∗)−
Q

r
(1−H (ωt, t;T ∗)−G (ωt, t;T ∗))

The first leg of the CDS-formula captures the value of receiving the bond’s face value in case

of default. The second leg captures the cost of paying the premium as a risk-free, infinite stream

(Q
r
) less two terms: the first (H) reflecting the discount attributable to the finite maturity of the

swap, and the second (G) reproducing the discount due to disrupted payments when and if default

occurs.

Typically, the fee is chosen so that the credit default swap upon initiation (t = 0) has zero

value:

Q =
r · (P − ψP ) ·G (ω0, 0;T ∗)

(1−H (ω0, 0;T ∗)−G (ω0, 0;T ∗))
(2)

Often the fee is expressed as a fraction of the reference obligation’s face value, and we will refer

to the ratio q = Q
P
as the credit default swap premium.

Intuitively, holding a CDS together with the reference obligation is close to holding the cor-

responding risk-free bond only. The positions are not identical, however, since the CDS typically

has a different maturity and assures its holder the nominal amount (P ), rather than value of the

risk free bond (B), upon default. Yet, it is often convenient to think of the default swap premium

of a just initiated swap as akin to the spread on the underlying corporate bond.

3 Empirical Method

In the previous section we laid down the pricing formulae for stocks, credits default swaps and

bonds. In this section we discuss issues related to the practical implementation of our framework.

Table 1 lists the notation used and the assigned parameter values; these are discussed below.

The following inputs are needed to price bonds and CDS using Propositions 1 and 2:
8



• the bond’s principal amount, P , the coupons c , maturity T and the coupon dates

• the recovery rate of the bond, ψ

• the risk-free interest rate, r

• the total nominal amount of debt, N , coupon C and maturity Υ (Leland & Toft only)

• the bargaining power of debtholders η (Fan & Sundaresan only)

• the costs of financial distress, α

• the tax rate, τ

• the rate, β, at which earnings are generated by the assets, and finally

• the current value, ω, and volatility of assets, σ

Details of the bond contract are readily observable. However, the recovery rate of the bond in

financial distress is not. We set it equal to 40%, roughly consistent with average defaulted debt

recovery rate estimates for US entities between 1985-2001. For the risk-free rate we use constant

maturity Treasury yields interpolated to match the maturity of the corporate bond or the CDS.

The nominal amount of debt equals the total liabilities taken from the firms’ balance sheets.

For simplicity, we assume that the average coupon paid out to all the firm’s debt holders equates

the risk-free rate: C = r · N . To apply the LT model, we also need to specify the maturity of
newly issued debt, Υ. This choice turns out to be important and at the same time difficult to pin

down; therefore, we will display results for three choices of maturity: 5, 6.767 and 10 years. In

Fan & Sundaresan, maturity is, by design, infinite but in contrast, we need the bargaining power

of debtholders — we use 0.5. Finally, we assume that 15% of the firm’s assets are lost in financial

distress before being paid out to debtholders and fix the tax rate at 20%.8

The cash flow parameter β is of crucial importance. We, therefore, opt for a dual approach.

The first assigns its value exogenously (using 0% and 6%), and the other predicts it as a weighted

average of the historical dividend yield and relative interest expense. The average of weighted

cash flow parameter β is 2.65% in our sample.
7We consider the average debt maturity (3.38 years) reported by Stohs and Mauer (1994) which represents a

reasonable average maturity of new debt (6.76 = 3.38 ∗ 2 years).
8The choice of 15% distress costs lies within the range estimated by Andrade and Kaplan (1998). The choice of

20% for the effective tax rate is consistent with the previous literature (see e.g. Leland (1998)) and is intentionally
lower than the corporate tax rate to reflect personal tax benefits to equity returns, thus reducing the tax advantage
of debt.
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We then require estimates of asset value and volatility. The methodology utilized, first proposed

by Duan (1994) in the context of deposit insurance, uses price data from one or several deriva-

tives written on the assets to infer the characteristics of the underlying, unobserved, process. In

principle, the ”derivative” can be any of the firm’s securities but in practice, only equity is likely

to offer a precise and undisrupted price series.

The maximum likelihood estimation relies on a time series of stock prices, Eobs =
©
Eobsi : i = 1...n

ª
.

A general formulation of the likelihood function using a change of variables is documented in Duan

(1994). If we let w
¡
Eobsi , ti;σ

¢
≡ E−1

¡
Eobsi , ti;σ

¢
be the inverse of the equity function, the likeli-

hood function for equity can be expressed as

LE
¡
Eobs;σ

¢
= Llnω

¡
lnw

¡
Eobsi , ti;σ

¢
: i = 2...n;σ

¢
(3)

−
nX
i=2

lnωi
∂ E (ωi, ti;σ)

∂ ωi

¯̄̄̄
ωi=w(Eobsi ,ti;σ)

Llnω is the standard likelihood function for a normally distributed variable, the log of the asset

value, and ∂ Ei
∂ωi

is the “delta” of the equity formula.

An estimate of the asset values is computed using the inverse equity function: ω̂t = w
¡
Eobsn , tn; bσ¢.

Once we have obtained the pair (bωt, bσ) it is straightforward to compute the estimated CDS fee
using (2). The bond spread is calculated by solving the bond price formula in Proposition 1,

computing the risky yield, and subtracting the yield for the corresponding risk free bond.9

4 Data

To perform our estimation, we require price data on credit default swaps and corporate bonds as

well as balance sheet and term structure information.

CreditTrade (CT) market prices are credit default swap (CDS) bids and offers that have either

been placed directly into their electronic trading platform by traders, or entered into their database

by their voice brokers who receive orders by telephone. Our database includes quotes and trades

from June 1997 to April 2003. However, the early years’ volumes are minimal and only as of

1999 does the volume become significant. The database distinguishes between bid and offers, and

between quotes and trades. The evolution of credit ratings of the underlying debt by Moody’s and

S&P is recorded from COMPUSTAT. In the early part of our sample, restructuring is considered

9This bond is valued as a hypothetical bond with the same promised payments as the risky bonds but with
yield equal to a linear interpolation of bracketing constant maturity Treasury (CMT) yield indices.
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a credit event. From the very end of 2002 onwards, restructuring is no longer considered a credit

event of the CDSs. The underlying debt is almost exclusively senior. All contracts are USD

denominated. For consistency, we retain only CDS on senior unsecured debt with restructuring

as default event. Very little information is lost with the use of each of these filters.

Our bond transaction data is sourced from the National Association of Insurance Commis-

sioners (NAIC). Bond issue - and issuer - related descriptive data are obtained from the Fixed

Investment Securities Database (FISD). The majority of transactions in the NAIC database take

place between 1994 and 2003.

Cleaning-up of the raw NAIC database was carried out in three steps. In the first, bond

transactions with counterparty names other than recognized financial institutions are exclused.

Transactions without a clearly defined counterparty are deemed unreliable.

In the second step, we restricted our sample to fixed coupon rate USD denominated bonds with

issuers in the industrial sector. Furthermore, we eliminated bond issues with option features, such

as callables, puttables, and convertibles. Asset-backed issues, bonds with sinking funds or credit

enhancements were also removed to ensure bond prices in the sample truly reflect the underlying

credit quality of issuers.

The third step involves selecting those bonds for which we have their issuers’ complete and

reliable market capitalizations as well as accounting information about liabilities. Daily equity

values are obtained from DATASTREAM. Quarterly firm balance sheet data is taken from COM-

PUSTAT.

In total, 145 firms qualify in both the CT and NAIC databases. When we take an intersection

of the CT and NAIC data, while requiring a transaction and / or quote for the bonds and default

swaps on the same name during the same day, we are left with 1387 pairs from 116 distinct

entities.10

Table 2 identifies descriptive statistics for firm, bond and CDS features. In 2a we see that firm

sizes vary from 2.0 billion to 78.4 billion with an average of 67.9 billion dollars. Bond issuers’ /

CDS reference entities’ S&P credit ratings range between AA and CCC while the majority lies

between BBB+ and BBB. The average bond issue size is 593 million dollars, with 0.65 million and

5, 000 million as extremes. The average transaction size is approximately 5.9 million dollars. On

average, bonds were 3.9 years of age andand had 9.7 years remaining to maturity. The average

coupon rate is 6.9 percent across all issues. The longest maturity of CDS in our sample is 10 years

10Note that since we are not using the bond prices and CDS premia in our estimation, we do not require any
matching or bracketing between bond and CDS maturities.
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versus 0.3 years as the shortest. The average maturity is 4.9 years.

Table 2b presents the distribution of market CDS and bond spreads over different ratings.

As expected, the CDS premia, like bond yield spreads, are largely determined by the reference

entity’s / issuer’s credit quality. Moreover, when Treasury rates are used as riskfree benchmark,

bond spreads lead over CDS premia across all rating categories save one (BB-, where there are

only five observations). CDS premia only represent 33% of bond spreads for the AA range, but

this fraction increases steadily to ca. 81% for a BB rating. For lower ratings, for which we have

less data, the pattern is no longer as clear, but the ratio remains much higher than for high grade

issuers. This is suggestive of a proportionally larger non-default component in bond yield spreads

over Treasury rates for issuers with little default risk. This pattern largely disappears when swap

rates are used

5 Results

We first briefly characterize the outcome of implementing each model in terms of among other

measures the asset value and volatility estimates, before turning to the main results — the cor-

responding predicted CDS premia and bond spreads. Table 4 reports these estimates when the

Treasury curve is used as benchmark (Panel A) and when the swpa curve is used (Panel B). Both

panels show that the Leland (1994) (L)and Fan and Sundaresan (2000) (FS) models yield approx-

imately the same asset value and volatility estimates on average, whereas the Leland and Toft

(1996) (LT) model produces higher asset value but lower asset volatility. The reason is that the

higher barrier in the latter model, ceteris paribus, increases the theoretical equity volatility and

lowers equity value. Hence the model will predict a higher asset value and/or a lower volatility

to match observed equity volatilities. As a measure of the combined effect of asset value and

volatility we also report a KMV-style distance-to-default, i.e. ω−L
σω
. This shows that the higher

asset value and lower volatility estimates in the LT model are sufficient to compensate the effect

of the higher barrier; the model produces the same distance-to-default as the Leland model does

(2.8), which the FS model has the highest (2.7). The LT model reports the highest the average

values of dollar-in-defaults of 2 and 10 years maturity. Therefore, the LT model is expected to

produce the highest CDS / bond spreads, followed by FS and finally L.

It is interesting to note that the choice of benchmark curve has a negligible effect on the

estimation of asset value and volatility. Nevertheless, as we will see shortly, the choice is critical

to the measurement of bond yield spreads and thus to assess model performance.
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Table 5 reports the estimated asset value volatilities of various credit rating by the LT model.

Our results of 23% on average closely resemble that of 22% in Schaefer and Strebulaev (2004).

Although there are some differences across rating categories, for those where the bulk of our data

lies (A and BBB ratings) we are well aligned.

In addition Figure 1 plots the time series of average asset values, volatilities, leverage and

market capitalization across the firms in the sample. At least two patterns become apparent.

First, volatility was higher between 1999 and 2001. This is visible not only in Panel A that plots

asset volatility but also in Panels B and C which summarize asset and equity values. At the same

time, leverage increases during the beginning of our sample and appears to stabilize at around

50% as of the second half of 2001.

Notice that the time series of these means appear highly volatile. This can at least partly be

attributed to the time varying composition of our transaction data: two consecutive means are

unlikely to derive from the same (small) subset of firms.

Now we turn our attention to CDS premia estimated by the three models, reported in tables

6-8, together with results for bond spreads. Using Treasury rates as riskfree benchmark, the L,

FS and LT models produce mean CDS premia of 69, 93 and 110 bps respectively compared to the

observed mean CDS premium of 112 bps. Thus, our perhaps most plausible model specification

produces CDS premia close to market quotes. The results show that the estimated CDS premia are

not significantly affected by the choice of riskfree rates. The L, FS and LT models produce mean

CDS premia of 62, 88 and 107 bps respectively, using swap rates as riskfree input. In addition, it

is interesting to note that the mean market CDS premium 112 bps is almost identical to the mean

market bond spreads 111 bps when swap rates are used as riskfree rates.

As expected, when Treasury rates are used as riskfree benchmark, the L model estimates the

lowest mean bond spread, 82 bps, while the FS and LT models estimate mean bond spreads of

107 bps and 114 bps, respectively. Compared to the mean market bond spread of 173 bps, they

substantially underestimate bond yield spreads by 53%, 38% and 34%. This is in line with the

findings of previous studies11. However, when swap rates are used as riskfree benchmark, the L,

FS and LT models estimate mean bond spreads of 73, 99 and 109 bps respectively, in comparison

to the mean market bond spread of 111 bps. They underestimate bond yield spreads by 34%, 11%

and 2%. The LT model produces fairly accurate spread predictions on average in this case.

The pricing of CDS contracts is tied to that of corporate bonds by an arbitrage argument. A

11See for example Jones, Mason, and Rosenfeld (1984), Ogden (1987) and Lyden and Saranati (2000). The
numbers are also comparable to what Huang and Huang (2002) find for various models in an extensive calibration
exercise.
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package of a corporate par floating rate note and default protection through a CDS is theoretically

a risk free investment. Given that a CDS contract is unfunded, i.e. requires no up front payment,

comparing bond yield spreads to CDS spreads requires taking into account the funding rate of

a bondholder, which is likely in the vicinity of swap rates. Thus, in practice, this implies that

the bond spread most comparable to the CDS price is the spread to the swap curve. Given that

structural models do not explicitly account for funding above the commonly used proxies for the

risk free rate, it would seem reasonable to expect them to perform better on CDS than on bonds,

where funding does not need to be adjusted for. Using the swap curve can then be viewed as a

pragmatic approach to correcting for the cost of funding when implementing a structural model

for bonds.

To assess the sensitivity of our results we also report estimated premia for alternative values

of the cash flow rate and, for the LT model, bond maturity. The cash flow rate tends to increase

bond spreads and CDS premia because firms with higher cash payout rates grow less and thus

have higher default probabilities. For instance, when Treasury are used as riskfree rates, increasing

β can help to reduce the yield spreads and CDS premia underestimation for the Leland and FS

models, although not eliminate it. For the LT model, bond yield spread underestimation persists.

For CDS premia, the parameter can tilt the balance although at 6%, CDS premia are clearly

overstated. The weighted average method of estimating β, provides reasonable results for CDS

premia in the LT model.

Note that both 0% and 6% are extreme values. Few if any firms will issue debt and finance

coupons entirely out of newly raised equity. A payout rate of 6% is more than two times higher

than the typical weighted average between firms’ dividend yields and interest expenses. Thus

numbers reported at these values should illustrate the highest and lowest spreads / premia that

can be obtained by varying this parameter.

For debt maturity in the LT model we consider three values:5, 6.76 and 10 years. Note that

the maturity parameter in this model represents the maturity of newly issued debt. It should,

therefore, exceed the average maturity of a firm’s debt. On the other hand, a firm’s debt consists

not only of bonds but also of a variety of credits with very short maturity. Consequently, although

many firms issue bonds with maturities exceeding 10 years, they are likely to also issue medium-

term notes, short-term commercial paper, while also indirectly borrowing from their suppliers, the

government and their employees. It seems unlikely that the average maturity of new debt exceeds

ten years.

Figure 2 plots the time series of average model and market bond and CDS spreads for the two

14



benchmark curves using the bcnchmark LT specification. It seems that on average the models

do a reasonable job of matching market spreads for CDS and for bonds when the swap curve is

used as benchmark. The exception is during 2000, when the model overshoots. Interestingly this

precedes a period with a historically very high incidence of defaults.

Next, we consider the residuals, defined as the difference between market and model bond or

CDS spreads. Figure 3 plots the time series of the difference between the average bond and CDS

residuals for the two choices of benchmark yield curve. The difference between the residuals (R)

for the Treasury curve would equal Rbond−RCDS = yMkt−yT−(yMod − yT )−(CDSMkt − CDSMod)
where yMkt and yMod denote the market and model bond yields respectively, yT the corresponing

Treasury yield and CDSMkt/Mod the default swap spreads. The model predicted bond and CDS

spreads are approximately the same for a given maturity.12 Hence Rbond − RCDS = yMkt − yT −
CDSMkt. This can be rewritten Rbond − RCDS = (yMkt − yS) − CDSMkt + (yS − yT ), where yS
denotes the swap yield. The last component, (yS − yT ) , corresponds to the swap spread and
whereas the (negative of the) first is known as the CDS basis by practitioners. This is a measure

of relative pricing in the cash and derivative markets for default risk. It would be interesting in

itself to study this variable but this lies outside the scope of this paper. What is important for our

purposes is the swap spread component. It suggests that the difference in residuals relative to the

Treasury curve will largely be driven by this spread.13 The top panel in Figure 3 confirms this by

showing that when the swap spread is high, the difference in the residuals is high and vice versa.

The bottom panel plots the difference in residuals when the swap curve is the chosen benchmark.

In that case, the above argument suggests that the main driver should be the basis.

To better understand the drivers of the residuals, we perform a linear regression analysis of

their cross section and time series. The results of which are reported in Tables 9 & 10. Table

9 summarizes the impact of common variables on the time series of average residuals for bonds

and CDS using both benchmark curves. The explanatory variables are the 5 year CMT rate, the

default premium as measured by the difference between Moody’s Baa and Aaa spread indices, the 5

year swap rate, the S&P 500 return and the VIX. Only one variable is systematically statistically

significant - the S&P 500 return. This result may seem surprising given that individual firms’

equity prices are inputs to the estimation of bond and CDS premia. One interpretation is that the

information in equity prices for contemporaneous bond and CDS spreads may not be sufficiently

accurate about the default risk premium component of the spread and that this is captured by

12The coupon rate also influences this relationship as the arbitrage is only exact for a par floater.
13We thank Stephen Schaefer for this insight.
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the market return variable. For bonds residuals, the default premium is significant but this is not

the case for CDS residuals. This could be a sign of the presence of a bond market specific risk

which does not spill over to the CDS market.

To attempt to explain the cross section of residuals, we average across time for each firm. Then

firm specific averages are regressed on bond and firm specific variables: the bond coupon rate,

the bond transaction size, the size of the bond issue, firm size, bond maturity and a dummy that

measures bond age (OTR). None of these variables are significant for residuals of either bonds or

CDS. The explanatory power is consistenly low for these regressions.

6 Concluding remarks

Using a set of structural models, we have evaluated the price of default protection for a sample

of US corporations. We find that one of our studied models has little difficulty in predicting

default swap premia on average. This result departs from what has been found in corporate bond

markets. For robustness, we perform the same exercise for bond spreads by the same issuers on

the same trading date. As previous work has found, bond spreads relative to the Treasury curve

are systematically underestimated. However, this is not the case when the swap curve is used as

a benchmark, suggesting that previously documented underestimation results may be sensitive to

the choice of risk free rate. A reason why the swap curve may be a more appropriate benchmark

for corporate bond spread measurement is that it lies closer to the cost of funding for traders

in the bond market. The bond spread over the swap curve thus measures the additional yield

these market participants require to participate in this market when faced with the alternative of

dealing in credit derivatives.
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A Appendix

A.1 Building blocks for CDS and bonds

First, define default as the time (T ) the asset value hits the default boundary from above, ln ωT
LT
≡

0. Then define G (ωt, t) as the value of a claim paying off $1 in default:

G (ωt, t) ≡ EB
£
e−r(T −t) · 1

¤
We let EB denote expectations under the standard pricing measure. The value of G is given by

G (ωt, t) =

µ
ωt
Lt

¶−θ
with the constant given by

θ =

q
(hB)2 + 2r + hB

σ

and

hB =
r − β − 0.5σ2

σ

Define the dollar-in-default with maturity G (ωt, t;T ) as the value of a claim paying off $1 in

default if it occurs before T

G (ωt, t;T ) ≡ EB
£
e−r(T −t) · 1 ·

¡
1− IT ≮T

¢¤
and define the binary option H (ωt, t;T ) as the value of a claim paying off $1 at T if default has

not occurred before that date

H (ωt, t;T ) ≡ EB
£
e−r(T−t) · 1 · IT ≮T

¤
IT ≮T is the indicator function for the survival event, i.e. the event that the asset value (ωT ) has

not hit the barrier prior to maturity (T £ T ). The price formulae for the last two building blocks
are given below. They contain a term that expresses the probabilities (under different measures)

of the survival event — or, the survival probability. To clarify this common structure, we first state

those probabilities in the following lemma.14

14The probabilities are previously known, as is the formula the down-and-out binary option in Lemma A.1 (see
for example Björk (1998)).
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Lemma 1 The probabilities of the event (T £ T ) (the “survival event”) at t under the probability
measures Qm : m = {B,G} are

Qm (T £ T ) = φ

µ
km
µ
ωt
Lt

¶¶
−
µ
ωt
Lt

¶− 2
σ
hm

φ

µ
km
µ
Lt
ωt

¶¶
where

km (x) =
lnx

σ
√
T − t + h

m
√
T − t

hG = hB − θ · σ = −
q
(hB)2 + 2r

φ (k) denotes the cumulative standard normal distribution function with integration limit k.

The probability measure QG is the measure having G (ωt, t) as numeraire (the Girsanov kernel

for going to this measure from the standard pricing measure is θ · σ). Using this lemma we obtain
the pricing formulae for the building blocks in a convenient form. The price of a down-and-out

binary option is

H (ωt, t;T ) = e
−r(T−t) ·QB (T £ T )

The price of a dollar-in-default claim with maturity T is

G (ωt, t;T ) = G (ωt, t) ·
¡
1−QG (T £ T )

¢
To understand this second formula, note that the value of receiving a dollar if default occurs prior

to T must be equal to receiving a dollar-in-default claim with infinite maturity, less a claim where

you receive a dollar in default conditional on it not occurring prior to T :

G (ωt, t;T ) = G (ωt, t)− e−r(T−t)EB
£
G (ωT , T ) · IT ≮T

¤
Using a change of probability measure, we can separate the variables within the expectation

brackets (see e.g. Geman, El-Karoui, and Rochet (1995)).

G (ωt, t;T ) = G (ωt, t)− e−r(T−t)EB [G (ωT , T )] · EG
£
IT ≮T

¤
= G (ωt, t) ·

¡
1−QG (T £ T )

¢
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A.2 The Leland Model

The value of the firm

F(ωt) = ωt + τ
C

r

∙
1−

³ωt
L

´−x¸
− αL ·

³ωt
L

´−x
with

x =
(r − β − 0.5σ2) +

p
(r − β − 0.5σ2)2 + 2σ2r
σ2

Value of debt

D(ωt) =
C

r
+

µ
(1− α)L− C

r

¶³ωt
L

´−x
The bankruptcy barrier

L =
(1− τ)C

r

x

1 + x

A.3 The Leland & Toft Model

The value fo the firm is the same as in Leland (1994). The value of debt is given by

D(ωt) =
C

r
+

µ
N − C

r

¶µ
1− e−rΥ
rΥ

− I(ωt)
¶
+

µ
(1− α)L− C

r

¶
J(ωt)

The bankruptcy barrier

L =
C
r

¡
A
rΥ
−B

¢
− AP

rΥ
− τCx

r

1 + αx− (1− α)B

where
A = 2ye−rΥφ

h
yσ
√
Υ
i
− 2zφ

h
zσ
√
Υ
i

− 2
σ
√
Υ
n
h
zσ
√
Υ
i
+ 2e−rΥ

σ
√
Υ
n
h
yσ
√
Υ
i
+ (z − y)

B = −
µ
2z +

2

zσ2Υ

¶
φ
h
zσ
√
Υ
i
− 2

σ
√
Υ
n
h
zσ
√
Υ
i
+ (z − y) + 1

zσ2Υ

and n[·] denotes the standard normal density function.
The components of the debt formulae are

I(ω) =
1

rΥ

¡
i (ω)− e−rΥj(ω)

¢
i(ω) = φ [h1] +

³ω
L

´−2a
φ [h2]

21



j(ω) =
³ω
L

´−y+z
φ [q1] +

³ω
L

´−y−z
φ [q2]

and

J(ω) =
1

zσ
√
Υ

⎛⎜⎜⎝
−
¡
ω
L

¢−a+z
φ [q1] q1

+
¡
ω
L

¢−a−z
φ [q2] q2

⎞⎟⎟⎠
Finally

q1 =
−b− zσ2Υ

σ
√
Υ

q2 =
−b+ zσ2Υ

σ
√
Υ

h1 =
−b− yσ2Υ

σ
√
Υ

h2 =
−b+ yσ2Υ

σ
√
Υ

and

y =
r − β − 0.5σ2

σ2

z =

p
y2σ4 + 2rσ2

σ2

x = y + z

b = ln
³ω
L

´
A.4 The Fan & Sundaresan Model

Given the trigger point for strategic debt service S, the value of the firm is

F(ωt) =

⎧⎪⎪⎨⎪⎪⎩
ωt +

τC
r
− λ+

λ+−λ−
τC
r

¡
ωt
S

¢λ− , when ωt > S
ωt +

−λ−
λ+−λ−

τC
r

¡
ωt
S

¢λ+ , when ωt ≤ S
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The equity value is

E(ωt) =

⎧⎪⎪⎨⎪⎪⎩
ωt − C(1−τ)

r
+
h
C(1−τ)
(1−λ−)r −

λ−(1−λ+)η
(λ+−λ−)(1−λ−)

τC
r

i ¡
ωt
S

¢λ− , when ωt > S
ηF(ωt)− η (1− α)ωt, when ωt ≤ S

(4)

where η denotes bargaining power of bondholders. The trigger point for strategic debt service is

S =
(1− τ + ητ)C

r

−λ−
1− λ−

1

1− ηα

and

λ± = 0.5−
(r − β)

σ2
±
s∙

(r − β)

σ2
− 0.5

¸2
+
2r

σ2
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1.

Table 1: List of notation / parameter values

Assigned Value

Parameter Notation Leland Leland & Toft Fan & Sundaresan

Bond principal / coupon / maturity P / c / T According to actual contract
CDS and bond recovery rate ψ 40% 40% 40%
Riskfree rate r Treasury yields interpolated to match bond maturity
Debt Nominal N Total liabilities from firm’s balance sheet
Debt Coupon C r ·N r ·N r ·N
Debt Maturity Υ − 5 /6.76/ 10 −
Bargaining power of debtholders η − − 0.5
Costs of Financial Distress α 15% 15% 15%
Tax rate τ 20% 20% 20%
Revenue rate β 0% / Weighted average1/ 6%

1The weighted average of the revenue rate is calculated from the balance sheets asµ
Interest Expenses

Total Liabilities

¶
× Leverage+ (Dividend Y ield)× (1− Leverage)

where

Leverage =
Total Liabilities

(Total Liabilities+Market Capital)
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Table 2: Descriptive statistics - firms, bonds and default swaps

Variable Mean Std. Dev. Minimum Maximum

Firm Size (billions of $) 67.9 96.2 2.0 78.4
Leverage 50% 19% 8% 95%
SP rating 9.8 4.8 1 27
Bond transaction size (dollars) 5.9” 20.3” 3000 411”
Bond issue size (dollars) 593” 660” 652’ 5000”
Bond age 3.9 3.4 0 15.9
Bond maturity 9.7 8.6 1.1 98.0
Bond coupon 6.9 1.2 3.4 11
CDS maturity 4.9 0.8 0.3 10.0
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Table 3: Summary statistics - Bond spreads and CDS premia

Bond Yield spreads Bond Yield spreads CDS premia
relative Treasury curve relative swap curve

Rating Transactions Mean Stdev Min Max Mean Stdev Max Min Mean Stdev Max Min
AAA 19 90 18 29 106 40 31 -33 132 58 21 10 71
AA 43 75 28 8.5 150 4 29 -46 93 25 12 7 59
AA- 30 61 23 25 117 -1 13 -21 38 24 8 12 47
A+ 95 96 35 13 172 33 42 -42 168 44 21 15 105
A 170 118 43 26 281 57 47 -57 223 51 26 15 140
A- 222 152 47 64 394 97 57 -10 396 92 48 27 410

BBB+ 331 146 60 34 552 85 62 -24 480 94 50 11 375
BBB 201 189 88 44 657 125 94 -34 598 114 81 22 503
BBB- 93 302 163 97 914 248 172 53 894 225 154 35 825
BB+ 36 367 131 230 808 298 144 136 760 299 176 110 750
BB 2 356 146 252 460 278 134 183 373 338 37 313 365
BB- 5 446 290 84 788 380 298 37 737 463 298 19 729
B+ 20 254 192 53 710 180 204 -6 683 220 258 22 825
B 17 327 166 134 857 243 175 70 801 205 193 55 777
B- 36 194 125 43 546 106 137 -23 463 129 190 15 900
CCC 1 369 na na na 282 na na na 177 na na na
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Table 4: summary of firm specific estimation output

Panel A: Treasury reference curve

Variable Model Mean Std.Dev. Min Max

Asset return L 30% 12% 6% 90%
volatility FS 30% 12% 6% 91%

LT (T=6.76) 23% 11% 6% 73%

Asset L 58.0 81.4 1.0 617.4
value (billion of $) FS 57.8 80.7 1.0 607.8

LT (T=6.76) 64.3 90.4 1.9 720.5

Default L 10.7 22.4 0.1 215.4
barrier (billion of $) FS 11.4 23.6 0.1 226.5

LT (T=6.76) 20.8 43.6 0.6 420.6

Distance L 2.8 0.8 1.0 5.4
to default FS 2.7 0.7 1.0 5.0

LT (T=6.76) 2.8 0.7 1.1 5.5

Dollar in default L 0.8% 2.7% 0.0% 28.8%
year 2 (%) FS 1.3% 3.8% 0.0% 37.9%

LT (T=6.76) 1.4% 3.3% 0.0% 37.4%

Dollar in default L 12.8% 13.4% 0.0% 79.3%
year 10 (%) FS 15.1% 14.6% 0.0% 80.6%

LT (T=6.76) 17.2% 14.0% 0.0% 83.8%
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Panel B: Swap reference curve

Variable Model Mean Std.Dev. Min Max

Asset return L 29% 12% 7% 85%
volatility FS 29% 12% 7% 86%

LT (T=6.76) 23% 11% 6% 73%

Asset L 59.1 83.4 1.1 643.1
value (billion of $) FS 58.8 82.8 1.1 635.4

LT (T=6.76) 64.0 89.8 1.9 714.8

Default L 12.0 26.1 0.2 251.4
barrier (billion of $) FS 12.8 27.6 0.2 265.6

LT (T=6.76) 20.6 42.7 0.5 411.8

Distance L 2.8 0.8 1.0 5.3
to default FS 2.7 0.7 1.0 5.0

LT (T=6.76) 2.8 0.7 1.1 5.2

Dollar in default L 0.7% 2.7% 0.0% 29.7%
year 2 (%) FS 1.3% 3.9% 0.0% 39.8%

LT (T=6.76) 1.4% 3.3% 0.0% 37.2%

Dollar in default L 11.2% 12.2% 0.0% 76.5%
year 10 (%) FS 13.6% 13.5% 0.0% 78.2%

LT (T=6.76) 15.9% 13.2% 0.0% 82.8%
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Table 5: asset volatility estimates by rating

CMT SWAP Schaefer & Strebulaev
AAA 16% 17% 25%
AA 29% 29% 22%
A 21% 22% 22%

BBB 23% 23% 22%
BB 25% 25% 26%
B 36% 36% 31%

CCC 26% 26% 38%
all 23% 23% 22%
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Table 6: Bond spread and CDS premia estimates: the Leland model

Panel A: Treasury reference curve

Market Model Residual Market Model Residual
Bond Bond Bond CDS CDS CDS
Spreads Spreads Spreads Premia Premia Premia

beta = 0

Mean 173 47 127 112 37 75
Std. Dev. 120 73 107 119 68 102
Min 9 0 -292 7 0 -345
Max 938 614 914 1000 588 905

beta = w. ave.

Mean 173 82 91 112 69 43
Std. Dev. 120 123 115 119 134 124
Min 9 0 -506 7 0 -682
Max 938 983 914 1000 1070 699

beta = 0.06

Mean 173 104 70 112 77 35
Std. Dev. 120 130 121 119 139 127
Min 9 0 -504 7 0 -624
Max 938 1223 914 1000 1209 728
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Panel B: Swap reference curve

Market Model Residual Market Model Residual
Bond Bond Bond CDS CDS CDS
Spreads Spreads Spreads Premia Premia Premia

beta = 0

Mean 111 44 67 112 36 76
Std. Dev. 124 70 113 119 66 102
Min -57 0 -358 7 0 -346
Max 903 606 894 1000 575 916

beta = w. ave.

Mean 111 73 38 112 62 50
Std. Dev. 124 117 118 119 126 118
Min -57 0 -550 7 0 -655
Max 903 976 894 1000 1083 726

beta = 0.06

Mean 111 96 15 112 73 40
Std. Dev. 124 123 121 119 131 121
Min -57 0 -487 7 0 -562
Max 903 1166 894 1000 1152 744
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Table 7: Bond spread and CDS premia estimates: the Fan & Sundaresan model

Panel A: Treasury reference curve
Market Model Residual Market Model Residual
Bond Bond Bond CDS CDS CDS
Spreads Spreads Spreads Premia Premia Premia

beta = 0

Mean 173 74 99 112 64 49
Std. Dev. 120 118 113 119 108 111
Min 9 0 -354 7 0 -464
Max 938 868 914 1000 642 801

beta = w. ave.

Mean 173 107 67 112 93 19
Std. Dev. 120 158 136 119 167 147
Min 9 0 -808 7 0 894
Max 938 1293 914 1000 1346 672

beta = 0.06

Mean 173 127 46 112 99 13
Std. Dev. 120 164 142 119 172 151
Min 9 0 -949 7 0 -964
Max 938 1668 914 1000 1549 674
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Panel B: Swap reference curve
Market Model Residual Market Model Residual
Bond Bond Bond CDS CDS CDS
Spreads Spreads Spreads Premia Premia Premia

beta = 0

Mean 111 72 39 112 63 49
Std. Dev. 124 122 121 119 108 109
Min -57 0 -468 7 0 -455
Max 903 1003 894 1000 660 819

beta = w. ave.

Mean 111 99 12 112 88 25
Std. Dev. 124 155 138 119 161 141
Min -57 0 886 7 0 -892
Max 903 1453 894 1000 1401 672

beta = 0.06

Mean 111 120 -9 112 96 16
Std. Dev. 124 160 143 119 167 146
Min -57 0 -989 7 0 -945
Max 903 1668 894 1000 1529 671
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Table 8: Bond spread and CDS premia estimates: the Leland & Toft model

Panel A: Treasury reference curve

Market Model Residual Market Model Residual Market Model Residual Market Model Residual
Bond Bond Bond CDS CDS CDS Bond Bond Bond CDS CDS CDS

Spreads Spreads Spreads Premia Premia Premia Spreads Spreads Spreads Premia Premia Premia

beta = 0, T=6.76 T = 5, beta =w.ave.

Mean 173 84 89 112 80 33 173 126 47 112 125 -12
Std. Dev. 120 105 110 119 101 108 120 145 132 119 165 146
Min 9 0 -402 7 0 -543 9 0 -533 7 0 -961
Max 938 830 910 1000 869 860 938 1079 908 1000 1319 754

beta = w. ave., T=6.76 T = 6.76, beta =w.ave.

Mean 173 114 59 112 110 2 173 114 59 112 110 2
Std. Dev. 120 133 124 119 150 135 120 133 124 119 150 135
Min 9 0 -510 7 0 -825 9 0 -510 7 0 -825
Max 938 895 910 1000 1183 782 938 895 910 1000 1183 782

beta = 0.06, T=6.76 T = 10, beta =w.ave.

Mean 173 167 6 112 150 -38 173 101 72 112 94 18
Std. Dev. 120 157 142 119 171 144 120 123 118 119 136 124
Min 9 0 -604 7 0 -689 9 0 -502 7 0 -709
Max 938 1046 911 1000 1211 652 938 801 912 1000 1067 806
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Panel B: Swap reference curve

Market Model Residual Market Model Residual Market Model Residual Market Model Residual
Bond Bond Bond CDS CDS CDS Bond Bond Bond CDS CDS CDS
Spreads Spreads Spreads Premia Premia Premia Spreads Spreads Spreads Premia Premia Premia

beta = 0, T=6.76 T = 5, beta =w.ave.

Mean 111 78 33 112 76 37 111 120 -9 112 121 -8
Std. Dev. 124 100 115 119 97 106 124 141 134 119 160 141
Min -57 0 -457 7 0 -529 -57 0 -591 7 0 -943
Max 903 780 889 1000 859 879 903 1171 888 1000 1302 769

beta = w. ave., T=6.76 T = 6.76, beta =w.ave.

Mean 111 109 2 112 107 6 111 109 2 112 107 6
Std. Dev. 124 129 127 119 145 130 124 129 127 119 145 130
Min -57 0 -560 7 0 -809 -57 0 -560 7 0 -809
Max 903 961 890 1000 1168 794 903 961 890 1000 1168 794

beta = 0.06, T=6.76 T = 10, beta =w.ave.

Mean 111 160 -49 112 148 -36 111 96 15 112 92 20
Std. Dev. 124 155 145 119 170 144 124 118 121 119 131 120
Min -57 0 -657 7 0 -690 -57 0 -552 7 0 -696
Max 903 1103 891 1000 1202 684 903 759 892 1000 1055 815
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Table 9: residual analysis (weekly average time series)

(A) Bond Residual Spread (CMT) (C) CDS Residual Premium (CMT)
Coef. Std. Err. t P>|t| [95% Conf. Interval] Coef. Std. Err. t P>|t| [95% Conf. Interval]

CMT 5Y -7.466 10.004 -0.75 0.456 -27.18 12.25 -15.54 10.034 -1.55 0.123 -35.32 4.23
Default Prem. 0.6447 2.91E-01 2.22 0.028 0.071 1.22 0.154 0.319 0.48 0.63 -0.475 0.783
Swap 5Y -0.1047 0.339 -0.31 0.758 -0.774 0.5648 -0.582 0.379 -1.53 0.126 -1.331 0.165
SP500 Return 311.9 99.243 3.14 0.002 116.3 507.5 317.3 93.705 3.39 0.001 132.6 502.07
VIX 0.4234 1.451 0.29 0.771 -2.436 3.283 0.783 1.420 0.55 0.582 -2.016 3.583
Constant 20.34 91.208 0.22 0.824 -159.44 200.13 65.33 89.814 0.73 0.468 -111.7 242.37

R-squared = 0.1450 R-squared = 0.1791

(B) Bond Residual Spread (SWAP) (D) CDS Residual Premium (SWAP)
Coef. Std. Err. t P>|t| [95% Conf. Interval] Coef. Std. Err. t P>|t| [95% Conf. Interval]

CMT 5Y -11.57 9.768 -1.18 0.237 -30.82 7.68 -12.65 9.797 -1.29 0.198 -31.96 6.661
Default Prem. 0.6152 0.295 2.08 0.038 0.033 1.197 0.156 0.311 0.5 0.615 -0.456 0.770
Swap 5Y -0.5022 3.45E-01 -1.45E+00 0.147 -1.183 1.79E-01 -0.575 0.366 -1.57 0.118 -1.296 0.146
SP500 Return 336.5 99.034 3.4 0.001 141.31 531.75 286.9 89.507 3.21 0.002 110.51 463.39
VIX 0.5847 1.430 0.41 0.683 -2.235 3.404 0.712 1.380 0.52 0.606 -2.008 3.432
Constant -0.1171 89.068 0 0.999 -175.69 175.45 56.85 88.238 0.64 0.52 -117.07 230.79

R-squared = 0.2382 R-squared = 0.1577
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Table 10: residual analysis (Cross Section)

(A) Bond Residual Spread (CMT) (C) CDS Residual Premium (CMT)
Coef. Std. Err. t P>|t| [95% Conf. Interval] Coef. Std. Err. t P>|t| [95% Conf. Interval]

Coupon 14.84 8.859 1.68 0.097 -2.716 32.401 11.580 13.599 0.85 0.396 -15.3733 38.535
Trans Size -4.51e-07 4.75e-07 -0.95 0.345 -1.39e-06 4.91e-07 -1.02e-06 6.60e-07 -1.54 0.126 -2.33e-0 0.000
Issue Amount -.00004 .000035 -1.14 0.255 -.00011 .00003 -.000025 .00005 -0.51 0.610 -.000125 0.000
Firm Size .00009 .0002 0.44 0.662 -.0003 .00049 .000153 .00029 0.53 0.596 -.000419 0.001
Bond Maturity .5522 3.155 0.18 0.861 -5.7012 6.805 2.9038 3.582 0.81 0.419 -4.1964 10.004
On-the-run 66.448 57.115 1.16 0.247 -46.752 179.648 78.7305 68.619 1.15 0.254 -57.270 214.732
Constant -41.961 88.585 -0.47 0.637 -217.53 133.61 -112.393 120.99 -0.93 0.355 -352.21 127.424

R-squared = 0.0189 R-squared = 0.0227

(B) Bond Residual Spread (SWAP) (D) CDS Residual Premium (SWAP)
Coef. Std. Err. t P>|t| [95% Conf. Interval] Coef. Std. Err. t P>|t| [95% Conf. Interval]

Coupon 12.741 9.0080 1.41 0.160 -5.11 30.595 13.713 13.357 1.03 0.307 -12.759 40.187
Trans Size -5.04e-07 4.71e-07 -1.07 0.287 -1.44e-06 4.30e-07 -9.73e-07 6.50e-07 -1.50 0.137 -2.26e-06 0.000
Issue Amount -.00004 .000035 -1.18 0.242 -.00011 .000029 -.00002 .000048 -0.45 0.653 -.000119 0.000
Firm Size .00009 .00021 0.41 0.679 -.0003 .00050 .00012 .00028 0.44 0.660 -.00044 0.001
Bond Maturity 2.0089 3.1926 0.63 0.531 -4.319 8.337 3.0564 3.607 0.85 0.399 -4.0927 10.206
On-the-run 59.847 56.149 1.07 0.289 -51.438 171.13 87.900 65.156 1.35 0.180 -41.237 217.038
Constant -93.394 89.442 -1.04 0.299 -270.66 83.87 -129.073 120.27 -1.07 0.286 -367.456 109.308

R-squared = 0.0231 R-squared = 0.0258
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Figure 1: Summary view of estimation output. The uppermost left panel plots the weekly averaged asset volatility across firms. The remaining panels
plot the asset value, firm leverage and market capitalizations respectively.
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Figure 3: Difference between Bond and CDS residuals. The upper panel plots this difference for CMT based residuals, in comparison with 5 and 10
year swap spreads. The lower panel plots the same measure based on the swap curve.
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Figure 1: Figure 2: Summary of pricing output. The upper (lower) two panels represent results for CDS (bond) pricing. The left panels are based on the
CMT curve as benchmarks whereas the right ones use the swap curve. 44




