MAGE: Matching approximate patterns in richly-attributed graphs

Robert Pienta, Acar Tamersoy, Hanghang Tong, Duen Horng Chau
<span title="">2014</span> <i title="IEEE"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/faqqmambavbalpofpx3p6nntua" style="color: black;">2014 IEEE International Conference on Big Data (Big Data)</a> </i> &nbsp;
Given a large graph with millions of nodes and edges, say a social network where both its nodes and edges have multiple attributes (e.g., job titles, tie strengths), how to quickly find subgraphs of interest (e.g., a ring of businessmen with strong ties)? We present MAGE, a scalable, multicore subgraph matching approach that supports expressive queries over large, richly-attributed graphs. Our major contributions include: (1) MAGE supports graphs with both node and edge attributes (most
more &raquo; ... approaches handle either one, but not both); (2) it supports expressive queries, allowing multiple attributes on an edge, wildcards as attribute values (i.e., match any permissible values), and attributes with continuous values; and (3) it is scalable, supporting graphs with several hundred million edges. We demonstrate MAGE's effectiveness and scalability via extensive experiments on large real and synthetic graphs, such as a Google+ social network with 460 million edges.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1109/bigdata.2014.7004278">doi:10.1109/bigdata.2014.7004278</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/25859565">pmid:25859565</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC4388251/">pmcid:PMC4388251</a> <a target="_blank" rel="external noopener" href="https://dblp.org/rec/conf/bigdataconf/PientaTTC14.html">dblp:conf/bigdataconf/PientaTTC14</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/gv5ejegbvfez7jzdfegsgxq4o4">fatcat:gv5ejegbvfez7jzdfegsgxq4o4</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20151011123328/http://www.cc.gatech.edu/~dchau/papers/14-bigdata-MAGE.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/70/4a/704abbf1ad19139b7d2354a4399afb6599c7fdd5.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1109/bigdata.2014.7004278"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> ieee.com </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4388251" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>