NFDI4Ing - the National Research Data Infrastructure for Engineering Sciences

Robert H. Schmitt, Verena Anthofer, Sören Auer, Sait Başkaya, Christian Bischof, Torsten Bronger, Florian Claus, Florian Cordes, Évariste Demandt, Thomas Eifert, Bernd Flemisch, Matthias Fuchs (+39 others)
2020 Zenodo  
NFDI4Ing brings together the engineering communities and fosters the management of engineering research data. The consortium represents engineers from all walks of the profession. It offers a unique method-oriented and user-centred approach in order to make engineering research data FAIR – findable, accessible, interoperable, and re-usable. NFDI4Ing has been founded in 2017. The consortium has actively engaged engineers across all five engineering research areas of the DFG classification.
more » ... g figures have teamed up with experienced infrastructure providers. As one important step, NFDI4Ing has taken on the task of structuring the wealth of concrete needs in research data management. A broad consensus on typical methods and workflows in engineering research has been established: The archetypes. So far, seven archetypes are harmonising the methodological needs: Alex: bespoke experiments with high variability of setups, Betty: engineering research software, Caden: provenance tracking of physical samples & data samples, Doris: high performance measurement & computation, Ellen: extensive and heterogeneous data requirements, Frank: many participants & simultaneous devices, Golo: field data & distributed systems. A survey of the entire engineering research landscape in Germany confirms that the concept of engineering archetypes has been very well received. 95% of the research groups identify themselves with at least one of the NFDI4Ing archetypes. NFDI4Ing plans to further coordinate its engagement along the gateways provided by the DFG classification of engineering research areas. Consequently, NFDI4Ing will support five community clusters. In addition, an overarching task area will provide seven base services to be accessed by both the community clusters and the archetype task areas. Base services address quality assurance & metrics, research software development, terminologies & metadata, repositories & storage, data security & sovereignty, training, and data & knowledge discove [...]
doi:10.5281/zenodo.4015201 fatcat:qud4tskyyjfrhcnkt4qjufaeyi