Relationship between small-scale catch-per-unit-effort and abundance in New Zealand abalone (pāua, Haliotis iris) fisheries [post]

Edward R Abraham, Philipp Neubauer
2015 unpublished
Catch-per-unit-effort (CPUE) is commonly used as an index of abundance in fishery stock assessments, but CPUE may be misleading, as a number of global fishery collapses have been attributed to a hyper-stable CPUE. In abalone (Halitidae family) fisheries, CPUE at large spatial scales may be hyper-stable because of aggregating behaviour and serial-depletion, whereby fishers sequentially fish areas with no corresponding decline in CPUE. Obtaining detailed spatial information in abalone fisheries
more » ... abalone fisheries might mitigate this problem, allowing CPUE to be used more confidently in these fisheries. Here, we report on the use of newly-developed high-resolution Global Positioning System (GPS) data loggers in New Zealand's blacklip abalone (pāua, Haliotis iris) fisheries. Using these data loggers, we tested, via a fish-down experiment, if CPUE is a reliable indicator of abundance at a small spatial scale and over a period of months. In the experiment, hyper-stability at small spatial scales occurred at high abundance, but CPUE reflected the estimated depletion level at the end of experimental fishing. This experiment suggests that the GPS data loggers provide a promising avenue to track CPUE at a small spatial scale, and to assess spatial resource use in New Zealand's pāua fisheries.
doi:10.7287/peerj.preprints.1388 fatcat:7qzwp6stqncqxkyfjqosejzwki