Evidence-driven testing and debugging of software systems [article]

Ezekiel Olamide Soremekun, Universität Des Saarlandes
2021
Program debugging is the process of testing, exposing, reproducing, diagnosing and fixing software bugs. Many techniques have been proposed to aid developers during software testing and debugging. However, researchers have found that developers hardly use or adopt the proposed techniques in software practice. Evidently, this is because there is a gap between proposed methods and the state of software practice. Most methods fail to address the actual needs of software developers. In this
more » ... tion, we pose the following scientific question: How can we bridge the gap between software practice and the state-of-the-art automated testing and debugging techniques? To address this challenge, we put forward the following thesis: Software testing and debugging should be driven by empirical evidence collected from software practice. In particular, we posit that the feedback from software practice should shape and guide (the automation) of testing and debugging activities. In this thesis, we focus on gathering evidence from software practice by conducting several empirical studies on software testing and debugging activities in the real-world. We then build tools and methods that are well-grounded and driven by the empirical evidence obtained from these experiments. Firstly, we conduct an empirical study on the state of debugging in practice using a survey and a human study. In this study, we ask developers about their debugging needs and observe the tools and strategies employed by developers while testing, diagnosing and repairing real bugs. Secondly, we evaluate the effectiveness of the state-of-the-art automated fault localization (AFL) methods on real bugs and programs. Thirdly, we conducted an experiment to evaluate the causes of invalid inputs in software practice. Lastly, we study how to learn input distributions from real-world sample inputs, using probabilistic grammars. To bridge the gap between software practice and the state of the art in software testing and debugging, we proffer the following empirical results and techniques: (1) We collect evidence on the state of practice in program debugging and indeed, we found that there is a chasm between (available) debugging tools and developer needs. We elicit the actual needs and concerns of developers when testing and diagnosing real faults and provide a benchmark (called DbgBench) to aid the automated evaluation of debugging and repair tools. (2) We provide empirical evidence on the effectiveness of several state-of-the-art AFL techniques (such as statistical debugging formulas and dynamic slicing). Building on the obtained empirical evidence, we provide a hybrid approach that outperforms the state-of-the-art AFL techniques. (3) We evaluate the prevalence and causes of invalid inputs in software practice, and we build on the lessons learned from this experiment to build a general-purpose algorithm (called ddmax ) that automatically diagnoses and repairs real-world invalid inputs. (4) We provide a method to learn the distribution of input elements in software practice using probabilistic grammars and we further employ the learned distribution to drive the test generation of inputs that are similar (or dissimilar) to sample inputs found in the wild. In summary, we propose an evidence-driven approach to software testing and debugging, which is based on collecting empirical evidence from software practice to guide and direct software testing and debugging. In our evaluation, we found that our approach is effective in improving the effectiveness of several debugging activities in practice. In particular, using our evidence-driven approach, we elicit the actual debugging needs of developers, improve the effectiveness of several automated fault localization techniques, effectively debug and repair invalid inputs, and generate test inputs that are (dis)similar to real-world inputs. Our proposed methods are built on empirical evidence and they improve over the state-of-the-art techniques in testing and debugging. Zusammenfassung Software-Debugging bezeichnet das Testen, Aufspüren, Reproduzieren, Diagnostizieren und das Beheben von Fehlern in Programmen. Es wurden bereits viele Debugging-Techniken vorgestellt, die Softwareentwicklern beim Testen und Debuggen unterstützen. Dennoch hat sich in der Forschung gezeigt, dass Entwickler diese Techniken in der Praxis kaum anwenden oder adaptieren. Das könnte daran liegen, dass es einen großen Abstand zwischen den vorgestellten und in der Praxis tatsächlich genutzten Techniken gibt. Die meisten Techniken genügen den Anforderungen der Entwickler nicht. In dieser Dissertation stellen wir die folgende wissenschaftliche Frage: Wie können wir die Kluft zwischen Software-Praxis und den aktuellen wissenschaftlichen Techniken für automatisiertes Testen und Debugging schließen? Um diese Herausforderung anzugehen, stellen wir die folgende These auf: Das Testen und Debuggen von Software sollte von empirischen Daten, die in der Software-Praxis gesammelt wurden, vorangetrieben werden. Genauer gesagt postulieren wir, dass das Feedback aus der Software-Praxis die Automation des Testens und Debuggens formen und bestimmen sollte. In dieser Arbeit fokussieren wir uns auf das Sammeln von Daten aus der Software-Praxis, indem wir einige empirische Studien über das Testen und Debuggen von Software in der echten Welt durchführen. Auf Basis der gesammelten Daten entwickeln wir dann Werkzeuge, die sich auf die Daten der durchgeführten Experimente stützen. Als erstes führen wir eine empirische Studie über den Stand des Debuggens in der Praxis durch, wobei wir eine Umfrage und eine Humanstudie nutzen. In dieser Studie befragen wir Entwickler zu ihren Bedürfnissen, die sie beim Debuggen haben und beobachten die Werkzeuge und Strategien, die sie beim Diagnostizieren, Testen und Aufspüren echter Fehler einsetzen. Als nächstes bewerten wir die Effektivität der aktuellen Automated Fault Localization (AFL)-Methoden zum automatischen Aufspüren von echten Fehlern in echten Programmen. Unser dritter Schritt ist ein Experiment, um die Ursachen von defekten Eingaben in der Software-Praxis zu ermitteln. Zuletzt erforschen wir, wie Häufigkeitsverteilungen von Teileingaben mithilfe einer Grammatik von echten Beispiel-Eingaben aus der Praxis gelernt werden können. Um die Lücke zwischen Software-Praxis und der aktuellen Forschung über Testen und Debuggen von Software zu schließen, bieten wir die folgenden empirischen Ergebnisse und Techniken: (1) Wir sammeln aktuelle Forschungsergebnisse zum Stand des Software-Debuggens und finden in der Tat eine Diskrepanz zwischen (vorhandenen) Debugging-Werkzeugen und dem, was der Entwickler tatsächlich benötigt. Wir sammeln die tatsächlichen Bedürfnisse von Entwicklern beim Testen und Debuggen von Fehlern aus der echten Welt und entwickeln einen Benchmark (DbgBench), um das automatische Evaluieren von Debugging-Werkzeugen zu erleichtern. (2) Wir stellen empirische Daten zur Effektivität einiger aktueller AFL-Techniken vor (z.B. Statistical Debugging-Formeln und Dynamic Slicing). Auf diese Daten aufbauend, stellen wir einen hybriden Algorithmus vor, der die Leistung der aktuellen AFL-Techniken übertrifft. (3) Wir evaluieren die Häufigkeit und Ursachen von ungültigen Eingaben in der Softwarepraxis und stellen einen auf diesen Daten aufbauenden universell einsetzbaren Algorithmus (ddmax ) vor, der automatisch defekte Eingaben diagnostiziert und behebt. (4) Wir stellen eine Methode vor, die Verteilung von Schnipseln von Eingaben in der Software-Praxis zu lernen, indem wir Grammatiken mit Wahrscheinlichkeiten nutzen. Die gelernten Verteilungen benutzen wir dann, um den Beispiel-Eingaben ähnliche (oder verschiedene) Eingaben zu erzeugen. Zusammenfassend stellen wir einen auf der Praxis beruhenden Ansatz zum Testen und Debuggen von Software vor, welcher auf empirischen Daten aus der Software-Praxis basiert, um das Testen und Debuggen zu unterstützen. In unserer Evaluierung haben wir festgestellt, dass unser Ansatz effektiv viele Debugging-Disziplinen in der Praxis verbessert. Genauer gesagt finden wir mit unserem Ansatz die genauen Bedürfnisse von Entwicklern, verbessern die Effektivität vieler AFL-Techniken, debuggen und beheben effektiv fehlerhafte Eingaben und generieren Test-Eingaben, die (un)ähnlich zu Eingaben aus der echten Welt sind. Unsere vorgestellten Methoden basieren auf empirischen Daten und verbessern die aktuellen Techniken des Testens und Debuggens.
doi:10.22028/d291-33858 fatcat:m3vm5mewirfabl45waeyquzmoa