Facial Landmark Detection Using Generative Adversarial Network Combined with Autoencoder for Occlusion

Hongzhe Liu, Weicheng Zheng, Cheng Xu, Teng Liu, Min Zuo, Mariko Nakano-Miyatake
2020 Mathematical Problems in Engineering  
The performance of the facial landmark detection model will be in trouble when it is under occlusion condition. In this paper, we present an effective framework with the objective of addressing the occlusion problem for facial landmark detection, which includes a generative adversarial network with improved autoencoders (GAN-IAs) and deep regression networks. In this model, GAN-IA can restore the occluded face region by utilizing skip concatenation among feature maps to keep more details.
more » ... more details. Meanwhile, self-attention mechanism that is effective in modeling long-range dependencies is employed to recover harmonious images for occluded faces. Deep regression networks are used to learn a nonlinear mapping from facial appearance to facial shape. Benefited from the mutual cooperation of GAN-IA and deep regression networks, a robust facial landmark detection model is achieved for the occlusion problem and the performance of the model achieves obviously improvement on challenging datasets.
doi:10.1155/2020/4589260 fatcat:dl72cim6djgp3dhyt6es3j4xb4