Estimating spillovers using panel data, with an application to the classroom

Peter Arcidiacono, Gigi Foster, Natalie Goodpaster, Josh Kinsler
2012 Quantitative Economics  
Standard-Nutzungsbedingungen: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen
more » ... bedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. Obtaining consistent estimates of spillovers in an educational context is hampered by at least two issues: selection into peer groups and peer effects emanating from unobservable characteristics. We develop an algorithm for estimating spillovers using panel data that addresses both of these problems. The key innovation is to allow the spillover to operate through the fixed effects of a student's peers. The only data requirements are multiple outcomes per student and heterogeneity in the peer group over time. We first show that the nonlinear least squares estimate of the spillover parameter is consistent and asymptotically normal for a fixed T . We then provide an iterative estimation algorithm that is easy to implement and converges to the nonlinear least squares solution. Using University of Maryland transcript data, we find statistically significant peer effects on course grades, particularly in courses of a collaborative nature. We compare our method with traditional approaches to the estimation of peer effects, and quantify separately the biases associated with selection and spillovers through peer unobservables.
doi:10.3982/qe145 fatcat:i6ixz5yejfcrdkp7zfiqezzzu4