Model Selection in Linear Mixed Models

Samuel Müller, J. L. Scealy, A. H. Welsh
2013 Statistical Science  
Linear mixed effects models are highly flexible in handling a broad range of data types and are therefore widely used in applications. A key part in the analysis of data is model selection, which often aims to choose a parsimonious model with other desirable properties from a possibly very large set of candidate statistical models. Over the last 5-10 years the literature on model selection in linear mixed models has grown extremely rapidly. The problem is much more complicated than in linear
more » ... ression because selection on the covariance structure is not straightforward due to computational issues and boundary problems arising from positive semidefinite constraints on covariance matrices. To obtain a better understanding of the available methods, their properties and the relationships between them, we review a large body of literature on linear mixed model selection. We arrange, implement, discuss and compare model selection methods based on four major approaches: information criteria such as AIC or BIC, shrinkage methods based on penalized loss functions such as LASSO, the Fence procedure and Bayesian techniques.
doi:10.1214/12-sts410 fatcat:x76okbteqfahdk7y4ipoxetdge