A review of automatic selection methods for machine learning algorithms and hyper-parameter values

Gang Luo
2016 Network Modeling Analysis in Health Informatics and Bioinformatics  
Machine learning studies automatic algorithms that improve themselves through experience. It is widely used for analyzing and extracting value from large biomedical data sets, or "big biomedical data;" advancing biomedical research; and improving healthcare. Before a machine learning model is trained, the user of a machine learning software tool typically must manually select a machine learning algorithm and set one or more model parameters termed hyper-parameters. The algorithm and
more » ... er values used can greatly impact the resulting model's performance, but their selection requires special expertise as well as many labor-intensive manual iterations. To make machine learning accessible to layman users with limited computing expertise, computer science researchers have proposed various automatic selection methods for algorithms and/or hyperparameter values for a given supervised machine learning problem. This paper reviews these methods, identifies several of their limitations in the big biomedical data environment, and provides preliminary thoughts on how to address these limitations. These findings establish a foundation for future research on automatically selecting algorithms and hyper-parameter values for analyzing big biomedical data.
doi:10.1007/s13721-016-0125-6 dblp:journals/netmahib/Luo16 fatcat:qkxv4gp64rfvvhgw7g3xygrapm