Thermal conductivity of silicene from first-principles

Han Xie, Ming Hu, Hua Bao
2014 Applied Physics Letters  
Silicene, as a graphene-like two-dimensional material, now receives exceptional attention of a wide community of scientists and engineers beyond graphene. Despite extensive study on its electric property, little research has been done to accurately calculate the phonon transport of silicene so far. In this paper, thermal conductivity of monolayer silicene is predicted from first-principles method. At 300 K, the thermal conductivity of monolayer silicene is found to be 9.4 W/mK and much smaller
more » ... K and much smaller than bulk silicon. The contributions from in-plane and out-of-plane vibrations to thermal conductivity are quantified, and the out-of-plane vibration contributes less than 10% of the overall thermal conductivity, which is different from the results of the similar studies on graphene. The difference is explained by the presence of small buckling, which breaks the reflectional symmetry of the structure. The flexural modes are thus not purely out-of-plane vibration and have strong scattering with other modes. V C 2014 AIP Publishing LLC.
doi:10.1063/1.4870586 fatcat:oni3y553sfbn7c3rukujyg6keq