A Joint Framework for Collaborative Filtering and Metric Learning [chapter]

Tak-Lam Wong, Wai Lam, Haoran Xie, Fu Lee Wang
2016 Lecture Notes in Computer Science  
We have developed a framework for jointly conducting collaborative filtering and distance metric learning based on regularized singular value decomposition (RSVD), which discovers the user matrix and item matrix in the low rank space. Our approach is able to solve RSVD and simultaneously learn the parameters of Mahalanobis distance considering the ratings given by similar users and dissimilar users. One characteristic of our approach is that the learned model can be effectively applied to
more » ... prediction and other relevant applications such as trust prediction, resulting in a solution which is coherent and optimal to both tasks. Another characteristic is that social community information and similarity information can be easily considered in our framework. We have conducted extensive experiments on rating prediction using real-world datasets to evaluate our framework. We have also compared our framework with other existing works to illustrate the effectiveness. Experimental results show that our framework achieves a promising prediction performance and outperforms the existing works.
doi:10.1007/978-3-319-48051-0_14 fatcat:ntkqzhjjvva45ldymz77d6wivu