A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is application/pdf
.
Mobile Virtual Reality Rail Traffic Congestion Prediction Algorithm Based on Convolutional Neural Network
2022
Mobile Information Systems
In order to explore a mobile virtual reality railway traffic congestion prediction algorithm based on convolutional neural network, an expanded causal convolution neural network (DCFCN) was proposed, which introduced the expanded convolution to increase the size of the receptive field and obtain the long-term memory of the sequence. At the same time, causal convolution is introduced to solve the problem of information leakage. DCFCN is made up of 6 convolutional layers, each layer achieves
doi:10.1155/2022/2174208
fatcat:oi3cxpf5vrc55egh4dzhiwxjue