Privacy-Preserving Secure Computation of Skyline Query in Distributed Multi-Party Databases

Mahboob Qaosar, Asif Zaman, Md. Siddique, Annisa, Yasuhiko Morimoto
2019 Information  
Selecting representative objects from a large-scale database is an essential task to understand the database. A skyline query is one of the popular methods for selecting representative objects. It retrieves a set of non-dominated objects. In this paper, we consider a distributed algorithm for computing skyline, which is efficient enough to handle "big data". We have noticed the importance of "big data" and want to use it. On the other hand, we must take care of its privacy. In conventional
more » ... ibuted algorithms for computing a skyline query, we must disclose the sensitive values of each object of a private database to another for comparison. Therefore, the privacy of the objects is not preserved. However, such disclosures of sensitive information in conventional distributed database systems are not allowed in the modern privacy-aware computing environment. Recently several privacy-preserving skyline computation frameworks have been introduced. However, most of them use computationally expensive secure comparison protocol for comparing homomorphically encrypted data. In this work, we propose a novel and efficient approach for computing the skyline in a secure multi-party computing environment without disclosing the individual attributes' value of the objects. We use a secure multi-party sorting protocol that uses the homomorphic encryption in the semi-honest adversary model for transforming each attribute value of the objects without changing their order on each attribute. To compute skyline we use the order of the objects on each attribute for comparing the dominance relationship among the objects. The security analysis confirms that the proposed framework can achieve multi-party skyline computation without leaking the sensitive attribute value to others. Besides that, our experimental results also validate the effectiveness and scalability of the proposed privacy-preserving skyline computation framework.
doi:10.3390/info10030119 fatcat:yopyjlipfvflfiltaoztv2szm4