Experimental Investigation on Combustion Characteristics of Hybrid Rocket Fuels with Multi-Angle Diverging Injector

Pragya Berwal, Shelly Biswas
2020 International Journal of Turbomachinery, Propulsion and Power  
Injection pattern of the oxidizer injected into the combustion chamber is a significant factor in evaluating the performance of a hybrid rocket. In the hybrid rocket combustion process, oxidizer flows over the solid fuel grain surface, leading to a turbulent diffusion boundary layer formation and the flame is established inside the boundary layer. The heat transfer from flame to the fuel surface leads to pyrolysis of the fuel. The heat fluxes, due to pyrolysis, block the heat transfer further
more » ... transfer further to the fuel surface, thus reducing the fuel regression rate. An attempt has been made in this paper to design and study the effect of the multi-angle diverging injector on the enhancement of the fuel regression rate and combustion efficiency of the hybrid rocket. The designed injector was compared with a shower head injector i.e., axial injector. The fuels used were paraffin wax and polyvinyl chloride (PVC) with gaseous oxygen as oxidizer. The effect of formation of the re-circulation zone and flow velocity were studied numerically by a cold flow simulation using ANSYS-Fluent software. It has been observed that direct impingement of the multi-angle diverging injector produces velocity in three directions, leading to distortion of the boundary layer. An increase of 8% in the average fuel regression rate for PVC fuel grain and 36.14% for paraffin wax fuel grain was observed, as compared to the shower head injector for the same oxidizer mass flow rate. A combustion efficiency increase of 38% and 14% was also observed using multi-angle diverging injector for PVC and paraffin wax fuel grains, respectively. A reduction in sliver and uniform fuel consumption was also observed using the novel multi-angle diverging injector.
doi:10.3390/ijtpp5020012 fatcat:golgbwa4vvhyhbrsbzhobsrlce