NexGenEx-Tom: a gene expression platform to investigate the functionalities of the tomato genome

Hamed Bostan, Maria Chiusano
2015 BMC Plant Biology  
Next Generation Sequencing technologies (NGS) unexpectedly pushed forward the capability of solving genome organization and of widely depicting gene expression. However, although the flourishing of tools to process the NGS data, versatile and user-friendly computational environments for integrative and comparative analyses of the results from the increasing amount of collections are still required. The gene expression of tomato tissues has been widely investigated in the years, thanks to both
more » ... T sequencing and different microarray platforms. However, the resulting collections are heterogeneous in terms of experimental approaches, genotypes and conditions, making the data far from representing a gene expression atlas for the species. Therefore, the recent release of NGS transcriptome collections from several tissues and stages from physiological conditions for specific tomato genotypes provides a relevant resource to be appropriately exploited to address key questions on gene expression patterns, such as those related to fruit ripening and development in tomato. The organization of the results from the processed collections in web accessible environments, enriched with tools for their exploration, may represent a precious opportunity for the scientific research in tomato and a reference example for similar efforts. Description: Here we present the architecture and the facilities of NexGenEx-, a web based platform that offers processed NGS transcriptome collections and enables immediate analyses of the results. The platform allows gene expression investigations, profiling and comparisons, and exploits different resources. Specifically, we present here the platform partition NexGenEx-Tom, dedicated to the organization of results from tomato NGS based transcriptomes. Conclusion: In the current version, NexGenEx-Tom includes processed and normalized NGS expression data from three collections covering several tissue/stages from different genotypes. Beyond providing a user-friendly interface, the platform was designed with the aim to easily be expanded to include other NGS based transcriptome collections. It can also integrate different genome releases, possibly from different cultivars or genotypes, but even from different species. The platform is proposed as an example effort in tomato, and is described as a profitable approach for the exploitation of these challenging and precious datasets.
doi:10.1186/s12870-014-0412-2 pmid:25849067 pmcid:PMC4340097 fatcat:kek7ikoxlfdlng6o5w5cuw6uom