Plasma-Deposited Ru-based Thin Films for Photoelectrochemical Water Splitting

Lukasz Jozwiak, Jacek Balcerzak, Jacek Tyczkowski
2020 Catalysts  
Plasma-enhanced chemical vapor deposition (PECVD) was used to produce new Ru-based thin catalytic films. The surface molecular structure of the films was examined by X-ray photoelectron spectroscopy (XPS). To determine the electro- and photoelectrochemical properties, the oxygen evolution reaction (OER) process was investigated by linear sweep voltammetry (LSV) at pH = 13.6. It was found that Ru atoms were mainly in the metallic state (Ru0) in the as-deposited films, whereas after the
more » ... after the electrochemical stabilization, higher oxidation states, mainly Ru+4 (RuO2), were formed. The stabilized films exhibited high catalytic activity in OER—for the electrochemical process, the onset and η10 overpotentials were approx. 220 and 350 mV, respectively, while for the photoelectrochemical process, the pure photocurrent density of about 160 mA/cm2 mg was achieved at 1.6 V (vs. reversible hydrogen electrode (RHE)). The plasma-deposited RuOX catalyst appears to be an interesting candidate for photoanode material for photoelectrochemical (PEC) water splitting.
doi:10.3390/catal10030278 fatcat:nskysodfzzgjlish3jxnkfrcsa