The influence of obliquity in the early Holocene Asian summer monsoon

Chi-Hua Wu, Shih-Yu Lee, John C. H. Chiang, Huang-Hsiung Hsu
2016 Geophysical Research Letters  
The early Holocene climatic optimum is associated with perihelion precession and high obliquity, though most studies emphasize the former over the latter. Asian monsoon proxy records only decisively show the precessional impact. To explore the obliquity effect, four climate simulations are conducted by fixing orbital parameters of present-day (0K), early Holocene (11K), the lowest obliquity (31K), and 11K's precession and eccentricity with 31K's obliquity (11Kp31Ko). We show that high obliquity
more » ... significantly augments the precessional impact by shifting the Asian monsoon farther north than present. By contrast, the present-day monsoon seasonality can still be identified in the simulations with low obliquity. We argue that the upper tropospheric (South Asian) and lower tropospheric (North Pacific) high-pressure systems are affected by the subtropical atmospheric heating changes responding to obliquity. As a consequence, associated with the changes in meridional gradients of geopotential height and temperature made by the heating, midlatitude transient eddies and monsoon-midlatitude interactions are modulated.
doi:10.1002/2016gl068481 fatcat:py332jton5epvd2tvl2pa2fiwe