Low-Rate DoS Attacks Detection Based on MAF-ADM

Sijia Zhan, Dan Tang, Jianping Man, Rui Dai, Xiyin Wang
2019 Sensors  
Low-rate denial of service (LDoS) attacks reduce the quality of network service by sending periodical packet bursts to the bottleneck routers. It is difficult to detect by counter-DoS mechanisms due to its stealthy and low average attack traffic behavior. In this paper, we propose an anomaly detection method based on adaptive fusion of multiple features (MAF-ADM) for LDoS attacks. This study is based on the fact that the time-frequency joint distribution of the legitimate transmission control
more » ... nsmission control protocol (TCP) traffic would be changed under LDoS attacks. Several statistical metrics of the time-frequency joint distribution are chosen to generate isolation trees, which can simultaneously reflect the anomalies in time domain and frequency domain. Then we calculate anomaly score by fusing the results of all isolation trees according to their ability to isolate samples containing LDoS attacks. Finally, the anomaly score is smoothed by weighted moving average algorithm to avoid errors caused by noise in the network. Experimental results of Network Simulator 2 (NS2), testbed, and public datasets (WIDE2018 and LBNL) demonstrate that this method does detect LDoS attacks effectively with lower false negative rate.
doi:10.3390/s20010189 pmid:31905728 fatcat:uyaslivmenerzmbzjtnsd22lru