Fully Convolutional Networks with Multiscale 3D Filters and Transfer Learning for Change Detection in High Spatial Resolution Satellite Images

Ahram Song, Jaewan Choi
2020 Remote Sensing  
Remote sensing images having high spatial resolution are acquired, and large amounts of data are extracted from their region of interest. For processing these images, objects of various sizes, from very small neighborhoods to large regions composed of thousands of pixels, should be considered. To this end, this study proposes change detection method using transfer learning and recurrent fully convolutional networks with multiscale three-dimensional (3D) filters. The initial convolutional layer
more » ... onvolutional layer of the change detection network with multiscale 3D filters was designed to extract spatial and spectral features of materials having different sizes; the layer exploits pre-trained weights and biases of semantic segmentation network trained on an open benchmark dataset. The 3D filter sizes were defined in a specialized way to extract spatial and spectral information, and the optimal size of the filter was determined using highly accurate semantic segmentation results. To demonstrate the effectiveness of the proposed method, binary change detection was performed on images obtained from multi-temporal Korea multipurpose satellite-3A. Results revealed that the proposed method outperformed the traditional deep learning-based change detection methods and the change detection accuracy improved using multiscale 3D filters and transfer learning.
doi:10.3390/rs12050799 fatcat:itr3wa65zbfufmbcs7ksxtzop4