### Equivariant incidence algebras and equivariant Kazhdan–Lusztig–Stanley theory

Nicholas Proudfoot
<span title="2021-09-02">2021</span> <i title="Cellule MathDoc/CEDRAM"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/jtld4aoak5ayfhb6qq4ltptrmi" style="color: black;">Algebraic Combinatorics</a> </i> &nbsp;
We establish a formalism for working with incidence algebras of posets with symmetries, and we develop equivariant Kazhdan-Lusztig-Stanley theory within this formalism. This gives a new way of thinking about the equivariant Kazhdan-Lusztig polynomial and equivariant Z-polynomial of a matroid.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.5802/alco.174">doi:10.5802/alco.174</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/ffzycfki4je5jllcuchcdlefqa">fatcat:ffzycfki4je5jllcuchcdlefqa</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20210911125551/https://alco.centre-mersenne.org/item/10.5802/alco.174.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/cd/e1/cde14fc024d51fa1fc0c3ce6a7bc57e3e96d5021.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.5802/alco.174"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> Publisher / doi.org </button> </a>