Monostatic coaxial 15 μm laser Doppler velocimeter using a scanning Fabry-Perot interferometer

Peter John Rodrigo, Christian Pedersen
2013 Optics Express  
We present a laser Doppler velocimeter (LDV) in monostatic coaxial arrangement consisting of off-the-shelf telecom-grade components: a single frequency laser (wavelength λ = 1.5 μm) and a high-finesse scanning Fabry-Perot interferometer (sFPI). In contrast to previous 1.5 μm LDV systems based on heterodyne detection, our sFPI-LDV has the advantages of having large remote sensing range not limited by laser coherence, high velocity dynamic range not limited by detector bandwidth and inherent sign
more » ... h and inherent sign discrimination of Doppler shift. The more optically efficient coaxial arrangement where transmitter and receiver optics share a common axis reduces the number of components and greatly simplifies the optical alignment. However, the sensitivity to unwanted backreflections is increased. To circumvent this problem, we employ a custom optical circulator design which compared to commercial fiber-optic circulator achieves ~40 dB reduction in strength of unwanted reflections (i.e. leakage) while maintaining high optical efficiency. Experiments with a solid target demonstrate the performance of the sFPI-LDV system with high sensitivity down to pW level at present update rates up to 10 Hz.
doi:10.1364/oe.21.021105 pmid:24103985 fatcat:fy6hxyoi45b3hfgvicq36hvlpa