Providing understanding of the behavior of feedforward neural networks

S.H. Huang, M.R. Endsley
1997 IEEE Transactions on Systems Man and Cybernetics Part B (Cybernetics)  
The advent of artificial neural networks has stirred the imagination of many in the field of knowledge acquisition. There is an expectation that neural networks will play an important role in automating knowledge acquisition and encoding, however, the problem solving knowledge of a neural network is represented at a subsymbolic level and hence is very difficult for a human user to comprehend. One way to provide an understanding of the behavior of neural networks is to extract their problem
more » ... ng knowledge in terms of rules that can be provided to users. Several papers which propose extracting rules from feedforward neural networks can be found in the literature, however, these approaches can only deal with networks with binary inputs. Furthermore, certain approaches lack theoretical support and their usefulness and effectiveness are debatable. Upon carefully analyzing these approaches, we propose a method to extract fuzzy rules from networks with continuous-valued inputs. The method was tested using a real-life problem (decisionmaking by pilots involving combat situations) and found to be effective.
doi:10.1109/3477.584953 pmid:18255885 fatcat:oec6m3ykz5fexcertf77pkopju