Improved Pulse Wave Velocity Estimation Using an Arterial Tube-Load Model

Mingwu Gao, Guanqun Zhang, N. Bari Olivier, Ramakrishna Mukkamala
2014 IEEE Transactions on Biomedical Engineering  
Pulse wave velocity (PWV) is the most important index of arterial stiffness. It is conventionally estimated by noninvasively measuring central and peripheral blood pressure (BP) and/or velocity (BV) waveforms and then detecting the foot-to-foot time delay between the waveforms wherein wave reflection is presumed absent. We developed techniques for improved estimation of PWV from the same waveforms. The techniques effectively estimate PWV from the entire waveforms, rather than just their feet,
more » ... mathematically eliminating the reflected wave via an arterial tube-load model. In this way, the techniques may be more robust to artifact while revealing the true PWV in absence of wave reflection. We applied the techniques to estimate aortic PWV from simultaneously and sequentially measured central and peripheral BP waveforms and simultaneously measured central BV and peripheral BP waveforms from 17 anesthetized animals during diverse interventions that perturbed BP widely. Since BP is the major acute determinant of aortic PWV, especially under anesthesia wherein vasomotor tone changes are minimal, we evaluated the techniques in terms of the ability of their PWV estimates to track the acute BP changes in each subject. Overall, the PWV estimates of the techniques tracked the BP changes better than those of the conventional technique (e.g., diastolic BP root-mean-squared errors of 3.4 versus 5.2 mmHg for the simultaneous BP waveforms and 7.0 versus 12.2 mmHg for the BV and BP waveforms (p <; 0.02)). With further testing, the arterial tube-load model-based PWV estimation techniques may afford more accurate arterial stiffness monitoring in hypertensive and other patients.
doi:10.1109/tbme.2013.2291385 pmid:24263016 pmcid:PMC4527045 fatcat:g7qxcda3szbkfdsqvoznokbhue