The modal logic of arithmetic potentialism and the universal algorithm [article]

Joel David Hamkins
2018 arXiv   pre-print
I investigate the modal commitments of various conceptions of the philosophy of arithmetic potentialism. Specifically, I consider the natural potentialist systems arising from the models of arithmetic under their natural extension concepts, such as end-extensions, arbitrary extensions, conservative extensions and more. In these potentialist systems, I show, the propositional modal assertions that are valid with respect to all arithmetic assertions with parameters are exactly the assertions of
more » ... . With respect to sentences, however, the validities of a model lie between S4 and S5, and these bounds are sharp in that there are models realizing both endpoints. For a model of arithmetic to validate S5 is precisely to fulfill the arithmetic maximality principle, which asserts that every possibly necessary statement is already true, and these models are equivalently characterized as those satisfying a maximal Σ_1 theory. The main S4 analysis makes fundamental use of the universal algorithm, of which this article provides a simplified, self-contained account. The paper concludes with a discussion of how the philosophical differences of several fundamentally different potentialist attitudes---linear inevitability, convergent potentialism and radical branching possibility---are expressed by their corresponding potentialist modal validities.
arXiv:1801.04599v3 fatcat:6om3ywyx25gabeiucqxbegti2y