Anchoring of actin to the plasma membrane enables tension production in the fission yeast cytokinetic ring [article]

Shuyuan Wang, Ben O'Shaughnessy
2019 bioRxiv   pre-print
AbstractThe cytokinetic ring generates tensile force that drives cell division, but how tension emerges from the relatively disordered ring organization remains unclear. Long ago a muscle-like sliding filament mechanism was proposed, but evidence for sarcomeric order is lacking. Here we present quantitative evidence that in fission yeast ring tension originates from barbed-end anchoring of actin filaments to the plasma membrane, providing resistance to myosin forces which enables filaments to
more » ... velop tension. The role of anchoring was highlighted by experiments on isolated fission yeast rings, where sections of ring unanchored from the membrane and shortened ~30-fold faster than normal [Mishra M., et al. (2013) Nat Cell Biol 15(7):853-859]. The dramatically elevated constriction rates are unexplained. Here we present a molecularly explicit simulation of constricting partially anchored rings as studied in these experiments. Simulations accurately reproduced the experimental constriction rates, and showed that following anchor release a segment becomes tensionless and shortens via a novel non-contractile reeling-in mechanism at about the load-free myosin-II velocity. The ends are reeled in by barbed-end-anchored actin filaments in adjacent segments. Other actin anchoring schemes failed to constrict rings. Our results quantitatively support a specific organization and anchoring scheme that generates tension in the cytokinetic ring.
doi:10.1101/586792 fatcat:uvxaym5c6nbcfo4zakflqnmc2y