Comparative Modeling of Transcranial Magnetic and Electric Stimulation in Mouse, Monkey, and Human [article]

Ivan Alekseichuk, Kathleen Mantell, Sina Shirinpour, Alexander Opitz
2018 bioRxiv   pre-print
Transcranial magnetic stimulation (TMS) and transcranial electric stimulation (TES) are increasingly popular methods to noninvasively affect brain activity. However, their mechanism of action and dose-response characteristics remain under active investigation. Translational studies in animals play a pivotal role in these efforts due to a larger neuroscientific toolset enabled by invasive recordings. In order to translate knowledge gained in animal studies to humans, it is crucial to generate
more » ... cial to generate comparable stimulation conditions with respect to the induced electric field in the brain. Here, we conduct a finite element method (FEM) modeling study of TMS and TES electric fields in a mouse, capuchin monkey, and human model. We systematically evaluate the induced electric fields and analyze their relationship to head and brain anatomy. We find that with increasing head size, TMS-induced electric field strength first increases and then decreases according to a two-term exponential function. TES-induced electric field strength strongly decreases from smaller to larger specimen with up to 100x fold differences across species. Our results can serve as a basis to compare and match stimulation parameters across studies in animals and humans.
doi:10.1101/442426 fatcat:jmrokd53njfsfax3bfjafjsb3y