Variance Penalized On-Policy and Off-Policy Actor-Critic [article]

Arushi Jain, Gandharv Patil, Ayush Jain, Khimya Khetarpal, Doina Precup
<span title="2021-02-03">2021</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
Reinforcement learning algorithms are typically geared towards optimizing the expected return of an agent. However, in many practical applications, low variance in the return is desired to ensure the reliability of an algorithm. In this paper, we propose on-policy and off-policy actor-critic algorithms that optimize a performance criterion involving both mean and variance in the return. Previous work uses the second moment of return to estimate the variance indirectly. Instead, we use a much
more &raquo; ... pler recently proposed direct variance estimator which updates the estimates incrementally using temporal difference methods. Using the variance-penalized criterion, we guarantee the convergence of our algorithm to locally optimal policies for finite state action Markov decision processes. We demonstrate the utility of our algorithm in tabular and continuous MuJoCo domains. Our approach not only performs on par with actor-critic and prior variance-penalization baselines in terms of expected return, but also generates trajectories which have lower variance in the return.
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/2102.01985v1">arXiv:2102.01985v1</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/vhhxpyhsmrfzxj3qez4ar3qicm">fatcat:vhhxpyhsmrfzxj3qez4ar3qicm</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20210205033243/https://arxiv.org/pdf/2102.01985v1.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/08/e7/08e7fda8b3077db9dbf7630ff5424582909a002a.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/2102.01985v1" title="arxiv.org access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> arxiv.org </button> </a>