Spatio-Temporal Variability and Trend of Rainfall and Its Association with Pacific Ocean Sea Surface Temperature in West Harerge Zone, Eastern Ethiopia [post]

Getachew Bayable Tiruneh, Gedamu Amare, Getnet Alemu, Temesgen Gashaw
2020 unpublished
Background: Rainfall variability is a common characteristic in Ethiopia and it exceedingly affects agriculture particularly in the eastern parts of the country where rainfall is relatively scarce. Hence, understanding the spatio-temporal variability of rainfall is indispensable for planning mitigation measures during high and low rainfall seasons. This study examined the spatio-temporal variability and trends of rainfall in the West Harerge Zone, eastern Ethiopia.Method: The coefficient of
more » ... tion (CV) and standardized anomaly index (SAI) was employed to analyze rainfall variability while Mann-Kendall (MK) trend test and Sen's slop estimator were employed to examine the trend and magnitude of the rainfall changes, respectively. The association between rainfall and Pacific Ocean Sea Surface Temperature (SST) was also evaluated by the Pearson correlation coefficient (r).Results: The annual rainfall CV ranges from 12-19.36% while the seasonal rainfall CV extends from 15-28.49%, 24-35.58%, and 38-75.9% for average Kiremt (June-September), Belg (February-May), and Bega (October-January) seasons, respectively (1983-2019). On the monthly basis, the trends of rainfall decreased in all months except in July, October, and November. However, the trends of rainfall were not statistically significant (α = 0.05), unlike November. The annual rainfall trends showed a non-significant decreasing trend. On a seasonal basis, the trend of mean Kiremt and Belg seasons rainfall was decreased. But, it increased in Bega season although it was not statistically significant. Moreover, the correlation between rainfall and Pacific Ocean SST was negative for Kiremt while positive for Belg and Bega seasons. Besides, the correlation between rainfall and Pacific Ocean SST was negative at annual time scales.Conclusions: High spatial and temporal rainfall variability on monthly, seasonal, and annual time scales was observed in the study area. Seasonal rainfall has high inter-annual variability in the dry season (Bega) than other seasons. The trends in rainfall were decreased in most of the months. Besides, the trend of rainfall was increased annually and in the Bega season rather than other seasons. Generally, the occurrence of droughts in the study area was associated with ENSO events like most other parts of Ethiopia and East Africa.
doi:10.21203/ fatcat:x2qvwpelfvbghovgalg22wxwqu