Optimal Coding Theorems in Time-Bounded Kolmogorov Complexity

Zhenjian Lu, Igor C. Oliveira, Marius Zimand, Mikołaj Bojańczyk, Emanuela Merelli, David P. Woodruff
The classical coding theorem in Kolmogorov complexity states that if an n-bit string x is sampled with probability δ by an algorithm with prefix-free domain then 𝖪(x) ≤ log(1/δ) + O(1). In a recent work, Lu and Oliveira [Zhenjian Lu and Igor C. Oliveira, 2021] established an unconditional time-bounded version of this result, by showing that if x can be efficiently sampled with probability δ then rKt(x) = O(log(1/δ)) + O(log n), where rKt denotes the randomized analogue of Levin's Kt complexity.
more » ... Unfortunately, this result is often insufficient when transferring applications of the classical coding theorem to the time-bounded setting, as it achieves a O(log(1/δ)) bound instead of the information-theoretic optimal log(1/δ). Motivated by this discrepancy, we investigate optimal coding theorems in the time-bounded setting. Our main contributions can be summarised as follows. • Efficient coding theorem for rKt with a factor of 2. Addressing a question from [Zhenjian Lu and Igor C. Oliveira, 2021], we show that if x can be efficiently sampled with probability at least δ then rKt(x) ≤ (2 + o(1)) ⋅ log(1/δ) + O(log n). As in previous work, our coding theorem is efficient in the sense that it provides a polynomial-time probabilistic algorithm that, when given x, the code of the sampler, and δ, it outputs, with probability ≥ 0.99, a probabilistic representation of x that certifies this rKt complexity bound. • Optimality under a cryptographic assumption. Under a hypothesis about the security of cryptographic pseudorandom generators, we show that no efficient coding theorem can achieve a bound of the form rKt(x) ≤ (2 - o(1)) ⋅ log(1/δ) + poly(log n). Under a weaker assumption, we exhibit a gap between efficient coding theorems and existential coding theorems with near-optimal parameters. • Optimal coding theorem for pK^t and unconditional Antunes-Fortnow. We consider pK^t complexity [Halley Goldberg et al., 2022], a variant of rKt where the randomness is public and the time bound is fixed. We observe the existence of an o [...]
doi:10.4230/lipics.icalp.2022.92 fatcat:xnjm6xs7gvfsnbqx2ks3vcrpxy