A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
Optimizing Boosting with Discriminative Criteria
2018
We describe the use of discriminative criteria to optimize Boosting based ensembles. Boosting algorithms may create hundreds of individual classifiers in order to fit the training data. However, this strategy isn't feasible and necessary for complex classification problems, such as real-time continuous speech recognition, in which only the combination of a few of acoustic models is practical. How to improve the classification accuracy for small size of ensemble is the focus of this paper. Two
doi:10.1184/r1/6608180
fatcat:wcoshaztu5duvg4i2nx6ir2rky