A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2019; you can also visit the original URL.
The file type is application/pdf
.
Image Embedding of PMU Data for Deep Learning towards Transient Disturbance Classification
[article]
2018
arXiv
pre-print
This paper presents a study on power grid disturbance classification by Deep Learning (DL). A real synchrophasor set composing of three different types of disturbance events from the Frequency Monitoring Network (FNET) is used. An image embedding technique called Gramian Angular Field is applied to transform each time series of event data to a two-dimensional image for learning. Two main DL algorithms, i.e. CNN (Convolutional Neural Network) and RNN (Recurrent Neural Network) are tested and
arXiv:1812.09427v1
fatcat:s6q4u7sok5fklb5uxthcfezq44