A new upper bound for the Dirac operators on hypersurfaces

Nicolas Ginoux, Georges Habib, Simon Raulot
2015 Pacific Journal of Mathematics  
We prove a new upper bound for the first eigenvalue of the Dirac operator of a compact hypersurface in any Riemannian spin manifold carrying a non-trivial twistor spinor without zeros on the hypersurface. The upper bound is expressed as the first eigenvalue of a drifting Schr\"odinger operator on the hypersurface. Moreover, using a recent approach developed by O. Hijazi and S. Montiel, we completely characterize the equality case when the ambient manifold is the standard hyperbolic space.
doi:10.2140/pjm.2015.278.79 fatcat:gctfrj64gjgyfmtwshdt5klhke