A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit <a rel="external noopener" href="https://arxiv.org/pdf/1801.10387v1.pdf">the original URL</a>. The file type is <code>application/pdf</code>.
On the computability of graphons
[article]
<span title="2018-01-31">2018</span>
<i >
arXiv
</i>
<span class="release-stage" >pre-print</span>
We investigate the relative computability of exchangeable binary relational data when presented in terms of the distribution of an invariant measure on graphs, or as a graphon in either L^1 or the cut distance. We establish basic computable equivalences, and show that L^1 representations contain fundamentally more computable information than the other representations, but that 0' suffices to move between computable such representations. We show that 0' is necessary in general, but that in the
<span class="external-identifiers">
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1801.10387v1">arXiv:1801.10387v1</a>
<a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/5vg7wxb52rc7jjq476jqa2zt3a">fatcat:5vg7wxb52rc7jjq476jqa2zt3a</a>
</span>
more »
... se of random-free graphons, no oracle is necessary. We also provide an example of an L^1-computable random-free graphon that is not weakly isomorphic to any graphon with an a.e. continuous version.
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200826035610/https://arxiv.org/pdf/1801.10387v1.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext">
<button class="ui simple right pointing dropdown compact black labeled icon button serp-button">
<i class="icon ia-icon"></i>
Web Archive
[PDF]
<div class="menu fulltext-thumbnail">
<img src="https://blobs.fatcat.wiki/thumbnail/pdf/15/99/1599d6e352b5b788e52a9fdb6259d7e66b421b59.180px.jpg" alt="fulltext thumbnail" loading="lazy">
</div>
</button>
</a>
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1801.10387v1" title="arxiv.org access">
<button class="ui compact blue labeled icon button serp-button">
<i class="file alternate outline icon"></i>
arxiv.org
</button>
</a>