A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
The algebraic dynamics of generic endomorphisms of ℙn
2014
Algebra & Number Theory
We investigate some general questions in algebraic dynamics in the case of generic endomorphisms of projective spaces over a field of characteristic zero. The main results that we prove are that a generic endomorphism has no non-trivial preperiodic subvarieties, any infinite set of preperiodic points is Zariski dense and any infinite subset of a single orbit is also Zariski dense, thereby verifying the dynamical "Manin--Mumford" conjecture of Zhang and the dynamical "Mordell--Lang" conjecture of Denis and Ghioca--Tucker in this case.
doi:10.2140/ant.2014.8.587
fatcat:ywu27l6jqjcrncmv2a2wcg6evm