Nuanced role for dendritic cell intrinsic IRE1 RNase in the regulation of antitumor adaptive immunity [article]

Felipe Flores-Santibañez, Sofie Rennen, Dominique Fernandez, Clint De Nolf, Sandra Gaete, Camila Fuentes, Carolina Moreno, Diego Figueroa, Álvaro Lladser, Takao Iwawaki, María Rosa Bono, Sophie Janssens (+1 others)
2022 bioRxiv   pre-print
ABSTRACTThe IRE1/XBP1s axis of the unfolded protein response (UPR) plays divergent roles in dendritic cell (DC) biology in steady state versus tumor contexts. Whereas tumor associated DCs show dysfunctional IRE1/XBP1s activation that curtails their function, the homeostasis of conventional type 1 DCs (cDC1) in tissues requires intact IRE1 RNase activity. Considering that cDC1s are key orchestrators of antitumor immunity, it is relevant to understand the functional versus dysfunctional roles of
more » ... RE1/XBP1s in tumor DC subtypes. Here, we show that cDC1s constitutively activate IRE1 RNase within subcutaneous B16 melanoma and MC38 adenocarcinoma tumor models. Mice lacking XBP1s in DCs display increased melanoma tumor growth, reduced T cell effector responses and accumulation of terminal exhausted CD8+ T cells. Transcriptomic studies revealed that XBP1 deficiency in tumor cDC1s decreased expression of mRNAs encoding XBP1s and regulated IRE1 dependent decay (RIDD) targets. Finally, we find that the dysregulated melanoma growth and impaired T cell immunity noticed in XBP1 deficient mice are attributed to RIDD induction in DCs. This work indicates that IRE1 RNase activity in melanoma/MC38-associated DCs fine tunes aspects of antitumor immunity independently of XBP1s, revealing a differential role for the UPR axis that depends on the DC subtype and cancer model.
doi:10.1101/2022.07.20.500838 fatcat:5sloyaaarbhqpizambo44dfyqe