Variance Reduction for Sequential Sampling in Stochastic Programming [article]

Jangho Park and Rebecca Stockbridge and Güzin Bayraksan
2020 arXiv   pre-print
This paper investigates the variance reduction techniques Antithetic Variates (AV) and Latin Hypercube Sampling (LHS) when used for sequential sampling in stochastic programming and presents a comparative computational study. It shows conditions under which the sequential sampling with AV and LHS satisfy finite stopping guarantees and are asymptotically valid, discussing LHS in detail. It computationally compares their use in both the sequential and non-sequential settings through a collection
more » ... f two-stage stochastic linear programs with different characteristics. The numerical results show that while both AV and LHS can be preferable to random sampling in either setting, LHS typically dominates in the non-sequential setting while performing well sequentially and AV gains some advantages in the sequential setting. These results imply that, given the ease of implementation of these variance reduction techniques, armed with the same theoretical properties and improved empirical performance relative to random sampling, AV and LHS sequential procedures present attractive alternatives in practice for a class of stochastic programs.
arXiv:2005.02458v2 fatcat:sv6g3oht5zhwdgmxvqrwnv34b4