Optimization of CNFET Parameters for High Performance Digital Circuits

Shimaa Ibrahim Sayed, Mostafa Mamdouh Abutaleb, Zaki Bassuoni Nossair
2016 Advances in Materials Science and Engineering  
The Carbon Nanotube Field Effect Transistor (CNFET) is one of the most promising candidates to become successor of silicon CMOS in the near future because of its better electrostatics and higher mobility. The CNFET has many parameters such as operating voltage, number of tubes, pitch, nanotube diameter, dielectric constant, and contact materials which determine the digital circuit performance. This paper presents a study that investigates the effect of different CNFET parameters on performance
more » ... ers on performance and proposes a new CNFET design methodology to optimize performance characteristics such as current driving capability, delay, power consumption, and area for digital circuits. We investigate and conceptually explain the performance measures at 32 nm technologies for pure-CNFET, hybrid MOS-CNFET, and CMOS configurations. In our proposed design methodology, the power delay product (PDP) of the optimized CNFET is about 68%, 63%, and 79% less than that of the nonoptimized CNFET, hybrid MOS-CNFET, and CMOS circuits, respectively. Therefore, the proposed CNFET design is a strong candidate to implement high performance digital circuits.
doi:10.1155/2016/6303725 fatcat:jd6dj7w75vfjfg7xbckmjgih7q